BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

554 related articles for article (PubMed ID: 15748903)

  • 101. Identification of a protein that recognizes a distal negative regulatory element within the mouse mammary tumor virus long terminal repeat.
    Kang CJ; Peterson DO
    Virology; 1999 Nov; 264(1):211-9. PubMed ID: 10544147
    [TBL] [Abstract][Full Text] [Related]  

  • 102. The pituitary-specific transcription factor, Pit-1, can direct changes in the chromatin structure of the prolactin promoter.
    Kievit P; Maurer RA
    Mol Endocrinol; 2005 Jan; 19(1):138-47. PubMed ID: 15375187
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Mouse mammary tumor virus chromatin in human breast cancer cells is constitutively hypersensitive and exhibits steroid hormone-independent loading of transcription factors in vivo.
    Mymryk JS; Berard D; Hager GL; Archer TK
    Mol Cell Biol; 1995 Jan; 15(1):26-34. PubMed ID: 7799933
    [TBL] [Abstract][Full Text] [Related]  

  • 104. Swapping function of two chromatin remodeling complexes.
    Fan HY; Trotter KW; Archer TK; Kingston RE
    Mol Cell; 2005 Mar; 17(6):805-15. PubMed ID: 15780937
    [TBL] [Abstract][Full Text] [Related]  

  • 105. Delimitation of a DNA sequence which confers inducibility by glucocorticoid hormones.
    Groner B; Herrlich P; Kennedy N; Ponta H; Rahmsdorf U; Hynes NE
    J Cell Biochem; 1982; 20(4):349-57. PubMed ID: 6306020
    [TBL] [Abstract][Full Text] [Related]  

  • 106. Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumour virus DNA.
    Willmann T; Beato M
    Nature; 1986 Dec 18-31; 324(6098):688-91. PubMed ID: 3025742
    [TBL] [Abstract][Full Text] [Related]  

  • 107. Analyzing the contributions of chromatin structure in nuclear hormone receptor activated transcription in vivo.
    Fryer CJ; Archer TK
    Methods Mol Biol; 2001; 176():283-96. PubMed ID: 11554329
    [TBL] [Abstract][Full Text] [Related]  

  • 108. Single-cell analysis of glucocorticoid receptor action reveals that stochastic post-chromatin association mechanisms regulate ligand-specific transcription.
    Voss TC; John S; Hager GL
    Mol Endocrinol; 2006 Nov; 20(11):2641-55. PubMed ID: 16873444
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Sequence-specific minor groove binding ligands as potential regulators of gene expression in Xenopus laevis oocytes.
    Belikov SV; Grokhovsky SL; Isaguliants MG; Surovaya AN; Gursky GV
    J Biomol Struct Dyn; 2005 Oct; 23(2):193-202. PubMed ID: 16060693
    [TBL] [Abstract][Full Text] [Related]  

  • 110. Sequence similarity between the long terminal repeat coding regions of mammary-tumorigenic BALB/cV and renal-tumorigenic C3H-K strains of mouse mammary tumor virus.
    Kang JJ; Schwegel T; Knepper JE
    Virology; 1993 Sep; 196(1):303-8. PubMed ID: 8395120
    [TBL] [Abstract][Full Text] [Related]  

  • 111. TEF-1 transcription factors regulate activity of the mouse mammary tumor virus LTR.
    Maeda T; Maeda M; Stewart AF
    Biochem Biophys Res Commun; 2002 Sep; 296(5):1279-85. PubMed ID: 12207913
    [TBL] [Abstract][Full Text] [Related]  

  • 112. The transcriptionally-active MMTV promoter is depleted of histone H1.
    Bresnick EH; Bustin M; Marsaud V; Richard-Foy H; Hager GL
    Nucleic Acids Res; 1992 Jan; 20(2):273-8. PubMed ID: 1311071
    [TBL] [Abstract][Full Text] [Related]  

  • 113. Hepatocyte nuclear factors 1alpha and 4alpha control expression of proline oxidase in adult liver.
    Kamiya A; Inoue Y; Kodama T; Gonzalez FJ
    FEBS Lett; 2004 Dec; 578(1-2):63-8. PubMed ID: 15581617
    [TBL] [Abstract][Full Text] [Related]  

  • 114. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter.
    Archer TK; Cordingley MG; Wolford RG; Hager GL
    Mol Cell Biol; 1991 Feb; 11(2):688-98. PubMed ID: 1846670
    [TBL] [Abstract][Full Text] [Related]  

  • 115. Transcription of multiple exogenous mouse mammary tumor viruses in a single mammary tumor of an SHN mouse.
    Koizumi A; Tsukada M; Sugawara K; Kusano T
    Lab Anim Sci; 1994 Dec; 44(6):584-9. PubMed ID: 7898031
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Comparison of nucleosome remodeling by the yeast transcription factor Pho4 and the glucocorticoid receptor.
    Then Bergh F; Flinn EM; Svaren J; Wright AP; Hörz W
    J Biol Chem; 2000 Mar; 275(12):9035-42. PubMed ID: 10722753
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling.
    Nagaich AK; Walker DA; Wolford R; Hager GL
    Mol Cell; 2004 Apr; 14(2):163-74. PubMed ID: 15099516
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Differential steroid hormone induction of transcription from the mouse mammary tumor virus promoter.
    Archer TK; Lee HL; Cordingley MG; Mymryk JS; Fragoso G; Berard DS; Hager GL
    Mol Endocrinol; 1994 May; 8(5):568-76. PubMed ID: 8058066
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Dual function of a nuclear factor I binding site in MMTV transcription regulation.
    Buetti E; Kühnel B; Diggelmann H
    Nucleic Acids Res; 1989 Apr; 17(8):3065-78. PubMed ID: 2542892
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Purified glucocorticoid receptor-hormone complex from rat liver cytosol binds specifically to cloned mouse mammary tumor virus long terminal repeats in vitro.
    Govindan MV; Spiess E; Majors J
    Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5157-61. PubMed ID: 6291027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.