BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 15749774)

  • 1. The SC3 hydrophobin self-assembles into a membrane with distinct mass transfer properties.
    Wang X; Shi F; Wösten HA; Hektor H; Poolman B; Robillard GT
    Biophys J; 2005 May; 88(5):3434-43. PubMed ID: 15749774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei.
    Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA
    Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of the hydrophobin SC3 at a hydrophobic/hydrophilic interface.
    Fan H; Wang X; Zhu J; Robillard GT; Mark AE
    Proteins; 2006 Sep; 64(4):863-73. PubMed ID: 16770796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of the fungal SC3 hydrophobin into functional amyloid fibrils depends on its concentration and is promoted by cell wall polysaccharides.
    Scholtmeijer K; de Vocht ML; Rink R; Robillard GT; Wösten HA
    J Biol Chem; 2009 Sep; 284(39):26309-14. PubMed ID: 19654326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spontaneous self-assembly of SC3 hydrophobins into nanorods in aqueous solution.
    Zykwinska A; Guillemette T; Bouchara JP; Cuenot S
    Biochim Biophys Acta; 2014 Jul; 1844(7):1231-7. PubMed ID: 24732577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the self-assembly and the accompanying structural changes of hydrophobin SC3 on a hydrophobic surface by mass spectrometry.
    Wang X; Permentier HP; Rink R; Kruijtzer JA; Liskamp RM; Wösten HA; Poolman B; Robillard GT
    Biophys J; 2004 Sep; 87(3):1919-28. PubMed ID: 15345568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces.
    de Vocht ML; Scholtmeijer K; van der Vegte EW; de Vries OM; Sonveaux N; Wösten HA; Ruysschaert JM; Hadziloannou G; Wessels JG; Robillard GT
    Biophys J; 1998 Apr; 74(4):2059-68. PubMed ID: 9545064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for multiple assembled states of Sc3 from Schizophyllum commune.
    Stroud PA; Goodwin JS; Butko P; Cannon GC; McCormick CL
    Biomacromolecules; 2003; 4(4):956-67. PubMed ID: 12857079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic evidence for amyloid-like interfacial self-assembly of hydrophobin Sc3.
    Butko P; Buford JP; Goodwin JS; Stroud PA; McCormick CL; Cannon GC
    Biochem Biophys Res Commun; 2001 Jan; 280(1):212-5. PubMed ID: 11162501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics study of the folding of hydrophobin SC3 at a hydrophilic/hydrophobic interface.
    Zangi R; de Vocht ML; Robillard GT; Mark AE
    Biophys J; 2002 Jul; 83(1):112-24. PubMed ID: 12080104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces.
    Wösten HA; Schuren FH; Wessels JG
    EMBO J; 1994 Dec; 13(24):5848-54. PubMed ID: 7813424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-assembly of the hydrophobin SC3 proceeds via two structural intermediates.
    de Vocht ML; Reviakine I; Ulrich WP; Bergsma-Schutter W; Wösten HA; Vogel H; Brisson A; Wessels JG; Robillard GT
    Protein Sci; 2002 May; 11(5):1199-205. PubMed ID: 11967376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional role of the disulfide bridges in the hydrophobin SC3.
    de Vocht ML; Reviakine I; Wösten HA; Brisson A; Wessels JG; Robillard GT
    J Biol Chem; 2000 Sep; 275(37):28428-32. PubMed ID: 10829014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fungal hydrophobin Sc3p self-assembles at the surface of aerial hyphae as a protein membrane constituting the hydrophobic rodlet layer.
    Wösten HA; Asgeirsdóttir SA; Krook JH; Drenth JH; Wessels JG
    Eur J Cell Biol; 1994 Feb; 63(1):122-9. PubMed ID: 8005099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobins, the fungal coat unravelled.
    Wösten HA; de Vocht ML
    Biochim Biophys Acta; 2000 Sep; 1469(2):79-86. PubMed ID: 10998570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oligomerization of hydrophobin SC3 in solution: from soluble state to self-assembly.
    Wang X; Graveland-Bikker JF; de Kruif CG; Robillard GT
    Protein Sci; 2004 Mar; 13(3):810-21. PubMed ID: 14978312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promotion of fibroblast activity by coating with hydrophobins in the beta-sheet end state.
    Janssen MI; van Leeuwen MB; van Kooten TG; de Vries J; Dijkhuizen L; Wösten HA
    Biomaterials; 2004 Jun; 25(14):2731-9. PubMed ID: 14962552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces.
    Lumsdon SO; Green J; Stieglitz B
    Colloids Surf B Biointerfaces; 2005 Sep; 44(4):172-8. PubMed ID: 16085399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis.
    Kupčík R; Zelená M; Řehulka P; Bílková Z; Česlová L
    J Sep Sci; 2016 Feb; 39(4):717-24. PubMed ID: 26608781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.