These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 15749778)

  • 1. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte.
    Li J; Dao M; Lim CT; Suresh S
    Biophys J; 2005 May; 88(5):3707-19. PubMed ID: 15749778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching.
    Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoskeletal dynamics of human erythrocyte.
    Li J; Lykotrafitis G; Dao M; Suresh S
    Proc Natl Acad Sci U S A; 2007 Mar; 104(12):4937-42. PubMed ID: 17360346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-based model of the spectrin cytoskeleton for red blood cell simulation.
    Fai TG; Leo-Macias A; Stokes DL; Peskin CS
    PLoS Comput Biol; 2017 Oct; 13(10):e1005790. PubMed ID: 28991926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells.
    Pan W; Fedosov DA; Caswell B; Karniadakis GE
    Microvasc Res; 2011 Sep; 82(2):163-70. PubMed ID: 21640731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton.
    Lee JC; Wong DT; Discher DE
    Biophys J; 1999 Aug; 77(2):853-64. PubMed ID: 10423431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic simulations of membranes with cytoskeletal interactions.
    Lin LC; Brown FL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011910. PubMed ID: 16090004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Native ultrastructure of the red cell cytoskeleton by cryo-electron tomography.
    Nans A; Mohandas N; Stokes DL
    Biophys J; 2011 Nov; 101(10):2341-50. PubMed ID: 22098732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forced extension of delipidated red blood cell cytoskeleton with little indication of spectrin unfolding.
    Afrin R; Nakaji M; Sekiguchi H; Lee D; Kishimoto K; Ikai A
    Cytoskeleton (Hoboken); 2012 Feb; 69(2):101-12. PubMed ID: 22213694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.
    Fedosov DA; Caswell B; Karniadakis GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4266-9. PubMed ID: 19965026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending a spectrin repeat unit. I: linear force-extension response.
    Paramore S; Ayton GS; Mirijanian DT; Voth GA
    Biophys J; 2006 Jan; 90(1):92-100. PubMed ID: 16227506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-component coarse-grained molecular-dynamics model for the human erythrocyte membrane.
    Li H; Lykotrafitis G
    Biophys J; 2012 Jan; 102(1):75-84. PubMed ID: 22225800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of spectrin network elasticity on the shapes of erythrocyte doublets.
    Hoore M; Yaya F; Podgorski T; Wagner C; Gompper G; Fedosov DA
    Soft Matter; 2018 Aug; 14(30):6278-6289. PubMed ID: 30014074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
    Boey SK; Boal DH; Discher DE
    Biophys J; 1998 Sep; 75(3):1573-83. PubMed ID: 9726958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique elastic properties of the spectrin tetramer as revealed by multiscale coarse-grained modeling.
    Mirijanian DT; Voth GA
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1204-8. PubMed ID: 18202182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.
    Li H; Lykotrafitis G
    Biophys J; 2014 Aug; 107(3):642-653. PubMed ID: 25099803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An elastic network model based on the structure of the red blood cell membrane skeleton.
    Hansen JC; Skalak R; Chien S; Hoger A
    Biophys J; 1996 Jan; 70(1):146-66. PubMed ID: 8770194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MD/DPD Multiscale Framework for Predicting Morphology and Stresses of Red Blood Cells in Health and Disease.
    Chang HY; Li X; Li H; Karniadakis GE
    PLoS Comput Biol; 2016 Oct; 12(10):e1005173. PubMed ID: 27792725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axisymmetric optical-trap measurement of red blood cell membrane elasticity.
    Lewalle A; Parker KH
    J Biomech Eng; 2011 Jan; 133(1):011007. PubMed ID: 21186897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.