These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The role of domain redundancy in genetic robustness against null mutations. Pasek S; Risler JL; Brézellec P J Mol Biol; 2006 Sep; 362(2):184-91. PubMed ID: 16914158 [TBL] [Abstract][Full Text] [Related]
7. Alternative routes and mutational robustness in complex regulatory networks. Wagner A; Wright J Biosystems; 2007 Mar; 88(1-2):163-72. PubMed ID: 16860925 [TBL] [Abstract][Full Text] [Related]
8. Exposing the fitness contribution of duplicated genes. DeLuna A; Vetsigian K; Shoresh N; Hegreness M; Colón-González M; Chao S; Kishony R Nat Genet; 2008 May; 40(5):676-81. PubMed ID: 18408719 [TBL] [Abstract][Full Text] [Related]
9. Yeast mutants of glucose metabolism with defects in the coordinate regulation of carbon assimilation. Dennis RA; Rhodey M; McCammon MT Arch Biochem Biophys; 1999 May; 365(2):279-88. PubMed ID: 10328823 [TBL] [Abstract][Full Text] [Related]
10. [Genetic mechanisms of realization of the law of limiting factor in Saccharomyces cerevisiae]. Sambuk EV Zh Obshch Biol; 2005; 66(4):310-25. PubMed ID: 16212281 [TBL] [Abstract][Full Text] [Related]
11. Multiple knockout analysis of genetic robustness in the yeast metabolic network. Deutscher D; Meilijson I; Kupiec M; Ruppin E Nat Genet; 2006 Sep; 38(9):993-8. PubMed ID: 16941010 [TBL] [Abstract][Full Text] [Related]
12. Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. Braunewell S; Bornholdt S J Theor Biol; 2007 Apr; 245(4):638-43. PubMed ID: 17204290 [TBL] [Abstract][Full Text] [Related]
13. Functional genomic analysis of commercial baker's yeast during initial stages of model dough-fermentation. Tanaka F; Ando A; Nakamura T; Takagi H; Shima J Food Microbiol; 2006 Dec; 23(8):717-28. PubMed ID: 16943074 [TBL] [Abstract][Full Text] [Related]
14. Multiple defects in the respiratory chain lead to the repression of genes encoding components of the respiratory chain and TCA cycle enzymes. Bourges I; Mucchielli MH; Herbert CJ; Guiard B; Dujardin G; Meunier B J Mol Biol; 2009 Apr; 387(5):1081-91. PubMed ID: 19245817 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic characterization of glucose repression mutants of Saccharomyces cerevisiae using experiments with 13C-labelled glucose. Raghevendran V; Gombert AK; Christensen B; Kötter P; Nielsen J Yeast; 2004 Jul; 21(9):769-79. PubMed ID: 15282800 [TBL] [Abstract][Full Text] [Related]
17. Monitoring yeast physiology during very high gravity wort fermentations by frequent analysis of gene expression. Rautio JJ; Huuskonen A; Vuokko H; Vidgren V; Londesborough J Yeast; 2007 Sep; 24(9):741-60. PubMed ID: 17605133 [TBL] [Abstract][Full Text] [Related]
18. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin. Shimizu M; Yuda N; Nakamura T; Tanaka H; Wariishi H Proteomics; 2005 Oct; 5(15):3919-31. PubMed ID: 16217726 [TBL] [Abstract][Full Text] [Related]
19. Swi/SNF-GCN5-dependent chromatin remodelling determines induced expression of GDH3, one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae. Avendaño A; Riego L; DeLuna A; Aranda C; Romero G; Ishida C; Vázquez-Acevedo M; Rodarte B; Recillas-Targa F; Valenzuela L; Zonszein S; González A Mol Microbiol; 2005 Jul; 57(1):291-305. PubMed ID: 15948967 [TBL] [Abstract][Full Text] [Related]
20. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Westergaard SL; Oliveira AP; Bro C; Olsson L; Nielsen J Biotechnol Bioeng; 2007 Jan; 96(1):134-45. PubMed ID: 16878332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]