These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 15749863)
1. The immunogenicity of dendritic cell-based vaccines is not hampered by doxorubicin and melphalan administration. Casati A; Zimmermann VS; Benigni F; Bertilaccio MT; Bellone M; Mondino A J Immunol; 2005 Mar; 174(6):3317-25. PubMed ID: 15749863 [TBL] [Abstract][Full Text] [Related]
2. Alkylating agent melphalan augments the efficacy of adoptive immunotherapy using tumor-specific CD4+ T cells. Lu X; Ding ZC; Cao Y; Liu C; Habtetsion T; Yu M; Lemos H; Salman H; Xu H; Mellor AL; Zhou G J Immunol; 2015 Feb; 194(4):2011-21. PubMed ID: 25560408 [TBL] [Abstract][Full Text] [Related]
3. Three different vaccines based on the 140-amino acid MUC1 peptide with seven tandemly repeated tumor-specific epitopes elicit distinct immune effector mechanisms in wild-type versus MUC1-transgenic mice with different potential for tumor rejection. Soares MM; Mehta V; Finn OJ J Immunol; 2001 Jun; 166(11):6555-63. PubMed ID: 11359807 [TBL] [Abstract][Full Text] [Related]
4. Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Kreiter S; Selmi A; Diken M; Koslowski M; Britten CM; Huber C; Türeci O; Sahin U Cancer Res; 2010 Nov; 70(22):9031-40. PubMed ID: 21045153 [TBL] [Abstract][Full Text] [Related]
5. Novel Cell-Penetrating Peptide-Based Vaccine Induces Robust CD4+ and CD8+ T Cell-Mediated Antitumor Immunity. Derouazi M; Di Berardino-Besson W; Belnoue E; Hoepner S; Walther R; Benkhoucha M; Teta P; Dufour Y; Yacoub Maroun C; Salazar AM; Martinvalet D; Dietrich PY; Walker PR Cancer Res; 2015 Aug; 75(15):3020-31. PubMed ID: 26116496 [TBL] [Abstract][Full Text] [Related]
6. Concurrent allorecognition has a limited impact on posttransplant vaccination. Manzo T; Hess Michelini R; Basso V; Ricupito A; Chai JG; Simpson E; Bellone M; Mondino A J Immunol; 2011 Feb; 186(3):1361-8. PubMed ID: 21209285 [TBL] [Abstract][Full Text] [Related]
8. CD4-directed peptide vaccination augments an antitumor response, but efficacy is limited by the number of CD8+ T cell precursors. Hanson HL; Kang SS; Norian LA; Matsui K; O'Mara LA; Allen PM J Immunol; 2004 Apr; 172(7):4215-24. PubMed ID: 15034034 [TBL] [Abstract][Full Text] [Related]
9. Therapy of established tumors in a novel murine model transgenic for human carcinoembryonic antigen and HLA-A2 with a combination of anti-idiotype vaccine and CTL peptides of carcinoembryonic antigen. Saha A; Chatterjee SK; Foon KA; Celis E; Bhattacharya-Chatterjee M Cancer Res; 2007 Mar; 67(6):2881-92. PubMed ID: 17363612 [TBL] [Abstract][Full Text] [Related]
10. Dual antigen target-based immunotherapy for prostate cancer eliminates the growth of established tumors in mice. Karan D; Dubey S; Van Veldhuizen P; Holzbeierlein JM; Tawfik O; Thrasher JB Immunotherapy; 2011 Jun; 3(6):735-46. PubMed ID: 21668311 [TBL] [Abstract][Full Text] [Related]
11. IL-15 induces type 1 and type 2 CD4+ and CD8+ T cells proliferation but is unable to drive cytokine production in the absence of TCR activation or IL-12 / IL-4 stimulation in vitro. Niedbala W; Wei X; Liew FY Eur J Immunol; 2002 Feb; 32(2):341-7. PubMed ID: 11807773 [TBL] [Abstract][Full Text] [Related]
12. CD4+ T cells are able to promote tumor growth through inhibition of tumor-specific CD8+ T-cell responses in tumor-bearing hosts. den Boer AT; van Mierlo GJ; Fransen MF; Melief CJ; Offringa R; Toes RE Cancer Res; 2005 Aug; 65(15):6984-9. PubMed ID: 16061684 [TBL] [Abstract][Full Text] [Related]
13. The immunologic function of 1B2+ double negative (CD4-CD8-) T cells in the 2C transgenic mouse. Margenthaler JA; Flye MW J Surg Res; 2005 Jun; 126(2):160-6. PubMed ID: 15919414 [TBL] [Abstract][Full Text] [Related]
14. Induction of impaired antitumor immunity by fusion of MHC class II-deficient dendritic cells with tumor cells. Tanaka Y; Koido S; Ohana M; Liu C; Gong J J Immunol; 2005 Feb; 174(3):1274-80. PubMed ID: 15661883 [TBL] [Abstract][Full Text] [Related]
15. Linkage of foreign carrier protein to a self-tumor antigen enhances the immunogenicity of a pulsed dendritic cell vaccine. Timmerman JM; Levy R J Immunol; 2000 May; 164(9):4797-803. PubMed ID: 10779787 [TBL] [Abstract][Full Text] [Related]
16. Dendritic cells charged with apoptotic tumor cells induce long-lived protective CD4+ and CD8+ T cell immunity against B16 melanoma. Goldszmid RS; Idoyaga J; Bravo AI; Steinman R; Mordoh J; Wainstok R J Immunol; 2003 Dec; 171(11):5940-7. PubMed ID: 14634105 [TBL] [Abstract][Full Text] [Related]
17. Tumor-specific CD4+ T cells are activated by "cross-dressed" dendritic cells presenting peptide-MHC class II complexes acquired from cell-based cancer vaccines. Dolan BP; Gibbs KD; Ostrand-Rosenberg S J Immunol; 2006 Feb; 176(3):1447-55. PubMed ID: 16424172 [TBL] [Abstract][Full Text] [Related]
18. Ox40 costimulation enhances the development of T cell responses induced by dendritic cells in vivo. De Smedt T; Smith J; Baum P; Fanslow W; Butz E; Maliszewski C J Immunol; 2002 Jan; 168(2):661-70. PubMed ID: 11777959 [TBL] [Abstract][Full Text] [Related]
19. The boosting effect of co-transduction with cytokine genes on cancer vaccine therapy using genetically modified dendritic cells expressing tumor-associated antigen. Ojima T; Iwahashi M; Nakamura M; Matsuda K; Naka T; Nakamori M; Ueda K; Ishida K; Yamaue H Int J Oncol; 2006 Apr; 28(4):947-53. PubMed ID: 16525645 [TBL] [Abstract][Full Text] [Related]
20. Three steps to breaking immune tolerance to lymphoma: a microparticle approach. Makkouk A; Joshi VB; Lemke CD; Wongrakpanich A; Olivier AK; Blackwell SE; Salem AK; Weiner GJ Cancer Immunol Res; 2015 Apr; 3(4):389-98. PubMed ID: 25627654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]