These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 15749987)
1. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Hamker FH Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987 [TBL] [Abstract][Full Text] [Related]
2. V4 receptive field dynamics as predicted by a systems-level model of visual attention using feedback from the frontal eye field. Hamker FH; Zirnsak M Neural Netw; 2006 Nov; 19(9):1371-82. PubMed ID: 17014990 [TBL] [Abstract][Full Text] [Related]
3. Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field. Cohen JY; Pouget P; Woodman GF; Subraveti CR; Schall JD; Rossi AF J Neurophysiol; 2007 Nov; 98(5):2580-7. PubMed ID: 17855586 [TBL] [Abstract][Full Text] [Related]
4. A competitive integration model of exogenous and endogenous eye movements. Meeter M; Van der Stigchel S; Theeuwes J Biol Cybern; 2010 Apr; 102(4):271-91. PubMed ID: 20162429 [TBL] [Abstract][Full Text] [Related]
5. Time course of attentional modulation in the frontal eye field during curve tracing. Khayat PS; Pooresmaeili A; Roelfsema PR J Neurophysiol; 2009 Apr; 101(4):1813-22. PubMed ID: 19176609 [TBL] [Abstract][Full Text] [Related]
6. Effects of similarity and history on neural mechanisms of visual selection. Bichot NP; Schall JD Nat Neurosci; 1999 Jun; 2(6):549-54. PubMed ID: 10448220 [TBL] [Abstract][Full Text] [Related]
7. Sources of top-down control in visual search. Weidner R; Krummenacher J; Reimann B; Müller HJ; Fink GR J Cogn Neurosci; 2009 Nov; 21(11):2100-13. PubMed ID: 19199412 [TBL] [Abstract][Full Text] [Related]
8. A neural model of sequential movement planning and control of eye movements: Item-Order-Rank working memory and saccade selection by the supplementary eye fields. Silver MR; Grossberg S; Bullock D; Histed MH; Miller EK Neural Netw; 2012 Feb; 26():29-58. PubMed ID: 22079270 [TBL] [Abstract][Full Text] [Related]
9. Parallel and serial neural mechanisms for visual search in macaque area V4. Bichot NP; Rossi AF; Desimone R Science; 2005 Apr; 308(5721):529-34. PubMed ID: 15845848 [TBL] [Abstract][Full Text] [Related]
10. Probabilistic modeling of eye movement data during conjunction search via feature-based attention. Rutishauser U; Koch C J Vis; 2007 Apr; 7(6):5. PubMed ID: 17685788 [TBL] [Abstract][Full Text] [Related]
11. Prefrontal cortex is involved in internal decision of forthcoming saccades. Milea D; Lobel E; Lehéricy S; Leboucher P; Pochon JB; Pierrot-Deseilligny C; Berthoz A Neuroreport; 2007 Aug; 18(12):1221-4. PubMed ID: 17632271 [TBL] [Abstract][Full Text] [Related]
12. Activation patterns in visual cortex reveal receptive field size-dependent attentional modulation. Rijpkema M; van Aalderen SI; Schwarzbach JV; Verstraten FA Brain Res; 2008 Jan; 1189():90-6. PubMed ID: 18062939 [TBL] [Abstract][Full Text] [Related]
13. Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Smith DT; Jackson SR; Rorden C Neuropsychologia; 2005; 43(9):1288-96. PubMed ID: 15949513 [TBL] [Abstract][Full Text] [Related]
14. Neuronal responses related to long-term recognition memory processes in prefrontal cortex. Xiang JZ; Brown MW Neuron; 2004 Jun; 42(5):817-29. PubMed ID: 15182720 [TBL] [Abstract][Full Text] [Related]
15. Frontal eye field contributions to rapid corrective saccades. Murthy A; Ray S; Shorter SM; Priddy EG; Schall JD; Thompson KG J Neurophysiol; 2007 Feb; 97(2):1457-69. PubMed ID: 17135479 [TBL] [Abstract][Full Text] [Related]
17. How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Brown JW; Bullock D; Grossberg S Neural Netw; 2004 May; 17(4):471-510. PubMed ID: 15109680 [TBL] [Abstract][Full Text] [Related]
18. The role of the human dorsolateral prefrontal cortex in ocular motor behavior. Pierrot-Deseilligny Ch; Müri RM; Nyffeler T; Milea D Ann N Y Acad Sci; 2005 Apr; 1039():239-51. PubMed ID: 15826978 [TBL] [Abstract][Full Text] [Related]
19. Selective gating of visual signals by microstimulation of frontal cortex. Moore T; Armstrong KM Nature; 2003 Jan; 421(6921):370-3. PubMed ID: 12540901 [TBL] [Abstract][Full Text] [Related]