These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 1575031)

  • 1. A mixed-effects model approach for the statistical analysis of vocal fold viscoelastic shear properties.
    Xu CC; Chan RW; Sun H; Zhan X
    J Mech Behav Biomed Mater; 2017 Nov; 75():477-485. PubMed ID: 28823902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neurophysiological Muscle Activation Scheme for Controlling Vocal Fold Models.
    Manriquez R; Peterson SD; Prado P; Orio P; Galindo GE; Zanartu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1043-1052. PubMed ID: 30908260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanotransduction in the Vocal Fold Microenvironment: A Narrative Review.
    Kimball EE; Rousseau B
    J Speech Lang Hear Res; 2024 Jul; 67(7):2128-2138. PubMed ID: 38865255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vocal Hinderances.
    Hubbard DL
    Int Dent J (Phila); 1899 Apr; 20(4):213-220. PubMed ID: 37912340
    [No Abstract]   [Full Text] [Related]  

  • 5. Restoration Strategies Following Short-Term Vocal Exertion in Healthy Young Adults.
    Fujiki RB; Huber JE; Sivasankar MP
    J Speech Lang Hear Res; 2021 Jul; 64(7):2472-2489. PubMed ID: 34121423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanics of human voice production and control.
    Zhang Z
    J Acoust Soc Am; 2016 Oct; 140(4):2614. PubMed ID: 27794319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.
    Dion GR; Jeswani S; Roof S; Fritz M; Coelho PG; Sobieraj M; Amin MR; Branski RC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():444-453. PubMed ID: 27127075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rehydration capacities and rates for various porcine tissues after dehydration.
    Meyer JP; McAvoy KE; Jiang J
    PLoS One; 2013; 8(9):e72573. PubMed ID: 24023753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pipette aspiration applied to the characterization of nonhomogeneous, transversely isotropic materials used for vocal fold modeling.
    Weiß S; Thomson SL; Lerch R; Döllinger M; Sutor A
    J Mech Behav Biomed Mater; 2013 Jan; 17():137-51. PubMed ID: 23127628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.
    Miri AK; Barthelat F; Mongeau L
    J Voice; 2012 Nov; 26(6):688-97. PubMed ID: 22483778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lamina propria and vocal muscle in human vocal fold tissue by ultrasound Nakagami imaging.
    Tsui PH; Huang CC; Sun L; Dailey SH; Shung KK
    Med Phys; 2011 Apr; 38(4):2019-26. PubMed ID: 21626934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheometric properties of canine vocal fold tissues: variation with anatomic location.
    Kimura M; Mau T; Chan RW
    Auris Nasus Larynx; 2011 Jun; 38(3):367-72. PubMed ID: 21035291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of Young's modulus of vocal folds by indentation.
    Chhetri DK; Zhang Z; Neubauer J
    J Voice; 2011 Jan; 25(1):1-7. PubMed ID: 20171829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exudative lesions of Reinke's space: a terminology proposal.
    Hantzakos A; Remacle M; Dikkers FG; Degols JC; Delos M; Friedrich G; Giovanni A; Rasmussen N
    Eur Arch Otorhinolaryngol; 2009 Jun; 266(6):869-78. PubMed ID: 19023584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental studies on the viscoelasticity of the vocal fold.
    Haji T; Mori K; Omori K; Isshiki N
    Acta Otolaryngol; 1992; 112(1):151-9. PubMed ID: 1575031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of thyroarytenoid and cricothyroid muscle activation on vocal fold stiffness and eigenfrequencies.
    Yin J; Zhang Z
    J Acoust Soc Am; 2013 May; 133(5):2972-83. PubMed ID: 23654401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of the effects of thyroarytenoid muscle activity upon pliability of vocal fold mucosa in an in vivo canine model.
    Yumoto E; Kadota Y
    Laryngoscope; 1997 Feb; 107(2):266-72. PubMed ID: 9023254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thyroarytenoid muscle activity and infraglottic aspect of canine vocal fold vibration.
    Yumoto E; Kadota Y; Kurokawa H
    Arch Otolaryngol Head Neck Surg; 1995 Jul; 121(7):759-64. PubMed ID: 7598853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical stress in phonation.
    Titze IR
    J Voice; 1994 Jun; 8(2):99-105. PubMed ID: 8061776
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.