BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 15750649)

  • 1. Side chain homologation of alanyl peptide nucleic acids: pairing selectivity and stacking.
    Diederichsen U; Weicherding D; Diezemann N
    Org Biomol Chem; 2005 Mar; 3(6):1058-66. PubMed ID: 15750649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous β-turn fold of an alternating alanyl/homoalanyl peptide nucleic acid.
    Cuesta-Seijo JA; Zhang J; Diederichsen U; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2012 Aug; 68(Pt 8):1067-70. PubMed ID: 22868773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide nucleic acids and their structural modifications.
    Falkiewicz B
    Acta Biochim Pol; 1999; 46(3):509-29. PubMed ID: 10698263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of a partly self-complementary peptide nucleic acid (PNA) oligomer showing a duplex-triplex network.
    Petersson B; Nielsen BB; Rasmussen H; Larsen IK; Gajhede M; Nielsen PE; Kastrup JS
    J Am Chem Soc; 2005 Feb; 127(5):1424-30. PubMed ID: 15686374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of helix morphology on co-operative polyamide backbone conformational flexibility in peptide nucleic acid complexes.
    Topham CM; Smith JC
    J Mol Biol; 1999 Oct; 292(5):1017-38. PubMed ID: 10512700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Femtosecond time-resolved guanine oxidation in acridine modified alanyl peptide nucleic acids.
    Weicherding D; Davis WB; Hess S; von Feilitzsch T; Michel-Beyerle ME; Diederichsen U
    Bioorg Med Chem Lett; 2004 Apr; 14(7):1629-32. PubMed ID: 15026038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The alpha-helical peptide nucleic acid concept: merger of peptide secondary structure and codified nucleic acid recognition.
    Huang Y; Dey S; Zhang X; Sönnichsen F; Garner P
    J Am Chem Soc; 2004 Apr; 126(14):4626-40. PubMed ID: 15070379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen bonding versus stacking stabilization by modified nucleobases incorporated in PNA.DNA duplexes.
    Sen A; Nielsen PE
    Biophys Chem; 2009 Apr; 141(1):29-33. PubMed ID: 19162391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Property editing of peptide nucleic acids (PNA): gem-dimethyl, cyanuryl and 8-aminoadenine PNAs.
    Ganesh KN; Gourishankar A; Vysabhattar R; Bokil P
    Nucleic Acids Symp Ser (Oxf); 2007; (51):17-8. PubMed ID: 18029564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA hairpin invasion and ribosome elongation arrest by mixed base PNA oligomer.
    Dias N; Sénamaud-Beaufort C; Forestier El El; Auvin C; Hélène C; Ester Saison-Behmoaras T
    J Mol Biol; 2002 Jul; 320(3):489-501. PubMed ID: 12096905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extending recognition by peptide nucleic acids (PNAs): binding to duplex DNA and inhibition of transcription by tail-clamp PNA-peptide conjugates.
    Kaihatsu K; Shah RH; Zhao X; Corey DR
    Biochemistry; 2003 Dec; 42(47):13996-4003. PubMed ID: 14636068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybridization of pyrrolidinyl peptide nucleic acids and DNA: selectivity, base-pairing specificity, and direction of binding.
    Vilaivan T; Srisuwannaket C
    Org Lett; 2006 Apr; 8(9):1897-900. PubMed ID: 16623579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine-based peptide nucleic acids (PNAs) with strong chiral constraint: control of helix handedness and DNA binding by chirality.
    Tedeschi T; Sforza S; Dossena A; Corradini R; Marchelli R
    Chirality; 2005; 17 Suppl():S196-204. PubMed ID: 15952136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling sequence-adaptive peptide nucleic acids.
    Ura Y; Beierle JM; Leman LJ; Orgel LE; Ghadiri MR
    Science; 2009 Jul; 325(5936):73-7. PubMed ID: 19520909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering preferences of hairpin PNA binding to complementary DNA: effect of N7G in aeg/aep PNA backbone.
    Kumar VA; D'Costa M; Ganesh KN
    Nucleosides Nucleotides Nucleic Acids; 2001; 20(4-7):1187-91. PubMed ID: 11562983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple gamma-backbone modification preorganizes peptide nucleic acid into a helical structure.
    Dragulescu-Andrasi A; Rapireddy S; Frezza BM; Gayathri C; Gil RR; Ly DH
    J Am Chem Soc; 2006 Aug; 128(31):10258-67. PubMed ID: 16881656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strand invasion of mixed-sequence B-DNA by acridine-linked, gamma-peptide nucleic acid (gamma-PNA).
    Rapireddy S; He G; Roy S; Armitage BA; Ly DH
    J Am Chem Soc; 2007 Dec; 129(50):15596-600. PubMed ID: 18027941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.
    Hirano T; Kuroda K; Kataoka M; Hayakawa Y
    Org Biomol Chem; 2009 Jul; 7(14):2905-11. PubMed ID: 19582300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA-like double helix formed by peptide nucleic acid.
    Wittung P; Nielsen PE; Buchardt O; Egholm M; Nordén B
    Nature; 1994 Apr; 368(6471):561-3. PubMed ID: 8139692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.