BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15750816)

  • 1. Decrease in excitability of LG following habituation of the crayfish escape reaction.
    Araki M; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 May; 191(5):481-9. PubMed ID: 15750816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Habituation of LG-mediated tailflip in the crayfish.
    Nagayama T; Araki M
    Invert Neurosci; 2015 Jun; 15(2):178. PubMed ID: 25796506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP mediates serotonin-induced synaptic enhancement of lateral giant interneuron of the crayfish.
    Araki M; Nagayama T; Sprayberry J
    J Neurophysiol; 2005 Oct; 94(4):2644-52. PubMed ID: 16160094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The onset of response habituation during the growth of the lateral giant neuron of crayfish.
    Edwards DH; Fricke RA; Barnett LD; Yeh SR; Leise EM
    J Neurophysiol; 1994 Aug; 72(2):890-8. PubMed ID: 7983544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social status-dependent modulation of LG-flip habituation in the crayfish.
    Araki M; Hasegawa T; Komatsuda S; Nagayama T
    J Exp Biol; 2013 Feb; 216(Pt 4):681-6. PubMed ID: 23125344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Habituation of Backward Escape Swimming in the Marbled Crayfish.
    Kasuya A; Nagayama T
    Zoolog Sci; 2016 Feb; 33(1):6-12. PubMed ID: 26853863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-lasting potentiation of excitatory synaptic signaling to the crayfish lateral giant neuron.
    Tsai LY; Tseng SH; Yeh SR
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):347-54. PubMed ID: 15614530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitization of the crayfish lateral giant escape reaction.
    Krasne FB; Glanzman DL
    J Neurosci; 1986 Apr; 6(4):1013-20. PubMed ID: 3084716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metamodulation of the crayfish escape circuit.
    Edwards DH; Yeh SR; Musolf BE; Antonsen BL; Krasne FB
    Brain Behav Evol; 2002; 60(6):360-9. PubMed ID: 12563168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IP3-mediated octopamine-induced synaptic enhancement of crayfish LG neurons.
    Araki M; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Aug; 198(8):607-15. PubMed ID: 22622466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protection from habituation of the crayfish lateral giant fibre escape response.
    Bryan JS; Krasne FB
    J Physiol; 1977 Oct; 271(2):351-68. PubMed ID: 200734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of habituation during escape swimming in starved crayfish.
    Kato N; Fujiyama N; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2018 Dec; 204(12):999-1005. PubMed ID: 30353372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lateral excitatory network in the escape circuit of crayfish.
    Herberholz J; Antonsen BL; Edwards DH
    J Neurosci; 2002 Oct; 22(20):9078-85. PubMed ID: 12388615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Social Experience on the Habituation Rate of Zebrafish Startle Escape Response: Empirical and Computational Analyses.
    Park C; Clements KN; Issa FA; Ahn S
    Front Neural Circuits; 2018; 12():7. PubMed ID: 29459823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin and octopamine have opposite modulatory effects on the crayfish's lateral giant escape reaction.
    Glanzman DL; Krasne FB
    J Neurosci; 1983 Nov; 3(11):2263-9. PubMed ID: 6415242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The crayfish lateral giants as command neurons for escape behavior.
    Olson GC; Krasne FB
    Brain Res; 1981 Jun; 214(1):89-100. PubMed ID: 7237168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonergic modulation of social status-dependent behavioural plasticity of the crayfish avoidance reaction.
    Momohara Y; Yoshida M; Nagayama T
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Nov; 201(11):1063-74. PubMed ID: 26282233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral and neuronal attributes of short- and long-term habituation in the crab Chasmagnathus.
    Tomsic D; de Astrada MB; Sztarker J; Maldonado H
    Neurobiol Learn Mem; 2009 Sep; 92(2):176-82. PubMed ID: 19186214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rostral ganglia are required for induction but not expression of crayfish escape reflex habituation: role of higher centers in reprogramming low-level circuits.
    Shirinyan D; Teshiba T; Taylor K; O'Neill P; Lee SC; Krasne FB
    J Neurophysiol; 2006 Apr; 95(4):2721-4. PubMed ID: 16381808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional analysis of a whole-body form of long-term habituation in Aplysia californica.
    Holmes G; Herdegen S; Schuon J; Cyriac A; Lass J; Conte C; Calin-Jageman IE; Calin-Jageman RJ
    Learn Mem; 2014 Jan; 22(1):11-23. PubMed ID: 25512573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.