These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 15751394)

  • 1. Biotechnology for aerobic conversion of food waste into organic fertilizer.
    Stabnikova O; Ding HB; Tay JH; Wang JY
    Waste Manag Res; 2005 Feb; 23(1):39-47. PubMed ID: 15751394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biotechnology of intensive aerobic conversion of sewage sludge and food waste into fertilizer.
    Wang JY; Stabnikova O; Tay ST; Ivanov V; Tay JH
    Water Sci Technol; 2004; 49(10):147-54. PubMed ID: 15259949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intensive aerobic bioconversion of sewage sludge and food waste into fertiliser.
    Wang JY; Stabnikova O; Ivanov V; Tay ST; Tay JH
    Waste Manag Res; 2003 Oct; 21(5):405-15. PubMed ID: 14661888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of sewage sludge and horticultural waste to develop artificial soil for plant cultivation in Singapore.
    Stabnikova O; Goh WK; Ding HB; Tay JH; Wang JY
    Bioresour Technol; 2005 Jun; 96(9):1073-80. PubMed ID: 15668204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.
    Jiang Y; Ju M; Li W; Ren Q; Liu L; Chen Y; Yang Q; Hou Q; Liu Y
    Bioresour Technol; 2015 Dec; 197():7-14. PubMed ID: 26313630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaled-up bioconversion of fish waste to liquid fertilizer using a 5 L ribbon-type reactor.
    Dao VT; Kim JK
    J Environ Manage; 2011 Oct; 92(10):2441-6. PubMed ID: 21640471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues.
    Odlare M; Pell M; Svensson K
    Waste Manag; 2008; 28(7):1246-53. PubMed ID: 17697770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable "Bio-Organic" Fertilizers: A Bibliometric Analysis and Systematic Literature Review.
    Kiruba N JM; Saeid A
    Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Waste paper and clinoptilolite as a bulking material with dewatered anaerobically stabilized primary sewage sludge (DASPSS) for compost production.
    Zorpas AA; Arapoglou D; Panagiotis K
    Waste Manag; 2003; 23(1):27-35. PubMed ID: 12623099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on production and characterization of enriched urban waste composts and their influence on crops productivity.
    Salakinkop SR; Hunshal CS; Gorogi PT; Basavaraj B
    J Environ Sci Eng; 2008 Jan; 50(1):83-8. PubMed ID: 19192932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aeration on stabilization of organic solid waste and microbial population dynamics in lab-scale landfill bioreactors.
    Sang NN; Soda S; Sei K; Ike M
    J Biosci Bioeng; 2008 Nov; 106(5):425-32. PubMed ID: 19111637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Using compost of agricultural solid waste to produce organic-inorganic compound fertilizer].
    Yang BJ; Wang HT
    Huan Jing Ke Xue; 2006 Jul; 27(7):1464-8. PubMed ID: 16881331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media.
    Tan JKN; Lee JTE; Chiam Z; Song S; Arora S; Tong YW; Tan HTW
    Waste Manag; 2021 Jul; 130():155-166. PubMed ID: 34090239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ash in composting of source-separated catering waste.
    Koivula N; Räikkönen T; Urpilainen S; Ranta J; Hänninen K
    Bioresour Technol; 2004 Jul; 93(3):291-9. PubMed ID: 15062825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composting of a solid olive-mill by-product ("alperujo") and the potential of the resulting compost for cultivating pepper under commercial conditions.
    Alburquerque JA; Gonzálvez J; García D; Cegarra J
    Waste Manag; 2006; 26(6):620-6. PubMed ID: 16005202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of appropriate initial composition and aeration method for co-composting of yard waste and market wastes.
    Aydn GA; Kocasoy G
    J Environ Sci Health B; 2003 Mar; 38(2):221-31. PubMed ID: 12617559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefits versus limiting factors.
    Alvarenga P; Mourinha C; Farto M; Santos T; Palma P; Sengo J; Morais MC; Cunha-Queda C
    Waste Manag; 2015 Jun; 40():44-52. PubMed ID: 25708406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-composting of horticultural waste with fruit peels, food waste, and soybean residues.
    Choy SY; Wang K; Qi W; Wang B; Chen CL; Wang JY
    Environ Technol; 2015; 36(9-12):1448-56. PubMed ID: 25650141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conjunctive and mineralization impact of municipal solid waste compost and inorganic fertilizer on lysimeter and pot studies.
    Khalid I; Nadeem A; Ahmed R; Husnain A
    Environ Technol; 2014; 35(1-4):487-98. PubMed ID: 24600889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A negative-pressure aeration system for composting food wastes.
    Lin C
    Bioresour Technol; 2008 Nov; 99(16):7651-6. PubMed ID: 18353633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.