BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 15751961)

  • 1. Distance and affinity dependence of triplex-induced recombination.
    Knauert MP; Lloyd JA; Rogers FA; Datta HJ; Bennett ML; Weeks DL; Glazer PM
    Biochemistry; 2005 Mar; 44(10):3856-64. PubMed ID: 15751961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triplex-induced recombination and repair in the pyrimidine motif.
    Kalish JM; Seidman MM; Weeks DL; Glazer PM
    Nucleic Acids Res; 2005; 33(11):3492-502. PubMed ID: 15961731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome targeting at short polypurine sites by cationic triplex-forming oligonucleotides.
    Vasquez KM; Dagle JM; Weeks DL; Glazer PM
    J Biol Chem; 2001 Oct; 276(42):38536-41. PubMed ID: 11504712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted correction of an episomal gene in mammalian cells by a short DNA fragment tethered to a triplex-forming oligonucleotide.
    Chan PP; Lin M; Faruqi AF; Powell J; Seidman MM; Glazer PM
    J Biol Chem; 1999 Apr; 274(17):11541-8. PubMed ID: 10206960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved bioactivity of G-rich triplex-forming oligonucleotides containing modified guanine bases.
    Rogers FA; Lloyd JA; Tiwari MK
    Artif DNA PNA XNA; 2014; 5(1):e27792. PubMed ID: 25483840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triplex-induced recombination in human cell-free extracts. Dependence on XPA and HsRad51.
    Datta HJ; Chan PP; Vasquez KM; Gupta RC; Glazer PM
    J Biol Chem; 2001 May; 276(21):18018-23. PubMed ID: 11278954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triple-helix formation induces recombination in mammalian cells via a nucleotide excision repair-dependent pathway.
    Faruqi AF; Datta HJ; Carroll D; Seidman MM; Glazer PM
    Mol Cell Biol; 2000 Feb; 20(3):990-1000. PubMed ID: 10629056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-affinity triple helix formation by synthetic oligonucleotides at a site within a selectable mammalian gene.
    Vasquez KM; Wensel TG; Hogan ME; Wilson JH
    Biochemistry; 1995 May; 34(21):7243-51. PubMed ID: 7766635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting of an interrupted polypurine:polypyrimidine sequence in mammalian cells by a triplex-forming oligonucleotide containing a novel base analogue.
    Semenyuk A; Darian E; Liu J; Majumdar A; Cuenoud B; Miller PS; Mackerell AD; Seidman MM
    Biochemistry; 2010 Sep; 49(36):7867-78. PubMed ID: 20701359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular generation of single-stranded DNA for chromosomal triplex formation and induced recombination.
    Datta HJ; Glazer PM
    Nucleic Acids Res; 2001 Dec; 29(24):5140-7. PubMed ID: 11812847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Head-to-head bis-hairpin polyamide minor groove binders and their conjugates with triplex-forming oligonucleotides: studies of interaction with target double-stranded DNA.
    Halby L; Ryabinin VA; Sinyakov AN; Novopashina DS; Venyaminova AG; Grokhovsky SL; Surovaya AN; Gursky GV; Boutorine AS
    J Biomol Struct Dyn; 2007 Aug; 25(1):61-76. PubMed ID: 17676939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triplex formation by oligonucleotides containing 5-(1-propynyl)-2'-deoxyuridine: decreased magnesium dependence and improved intracellular gene targeting.
    Lacroix L; Lacoste J; Reddoch JF; Mergny JL; Levy DD; Seidman MM; Matteucci MD; Glazer PM
    Biochemistry; 1999 Feb; 38(6):1893-901. PubMed ID: 10026270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted genome modification via triple helix formation.
    Kalish JM; Glazer PM
    Ann N Y Acad Sci; 2005 Nov; 1058():151-61. PubMed ID: 16394134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple helix formation by (G,A)-containing oligonucleotides: asymmetric sequence effect.
    Arimondo PB; Barcelo F; Sun JS; Maurizot JC; Garestier T; Hélène C
    Biochemistry; 1998 Nov; 37(47):16627-35. PubMed ID: 9843430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency intrachromosomal gene conversion induced by triplex-forming oligonucleotides microinjected into mouse cells.
    Luo Z; Macris MA; Faruqi AF; Glazer PM
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9003-8. PubMed ID: 10900269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures.
    Pabon-Martinez YV; Xu Y; Villa A; Lundin KE; Geny S; Nguyen CH; Pedersen EB; Jørgensen PT; Wengel J; Nilsson L; Smith CIE; Zain R
    Sci Rep; 2017 Sep; 7(1):11043. PubMed ID: 28887512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A kinetic study of triple-helix formation at a critical R x Y sequence of the murine c-Ki-ras promoter by (A,G)- and (G,T) oligonucleotides.
    Xodo LE; Pirulli D; Quadrifoglio F
    Eur J Biochem; 1997 Sep; 248(2):424-32. PubMed ID: 9346298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.
    Torigoe H; Nakagawa O; Imanishi T; Obika S; Sasaki K
    Biochimie; 2012 Apr; 94(4):1032-40. PubMed ID: 22245184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of a triplex-forming oligonucleotide-pyrrolobenzodiazepine conjugate.
    Zhilina ZV; Ziemba AJ; Trent JO; Reed MW; Gorn V; Zhou Q; Duan W; Hurley L; Ebbinghaus SW
    Bioconjug Chem; 2004; 15(6):1182-92. PubMed ID: 15546183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Lack of Mutagenic Potential of a Guanine-Rich Triplex Forming Oligonucleotide in Physiological Conditions.
    Saleh AF; Fellows MD; Ying L; Gooderham NJ; Priestley CC
    Toxicol Sci; 2017 Jan; 155(1):101-111. PubMed ID: 27660205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.