These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 15752011)

  • 1. Role of desorption kinetics in determining marangoni flows generated by using electrochemical methods and redox-active surfactants.
    Bai G; Graham MD; Abbott NL
    Langmuir; 2005 Mar; 21(6):2235-41. PubMed ID: 15752011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemistry of TEMPO in the aqueous liquid/vapor interfacial region: measurements of the lateral mobility and kinetics of surface partitioning.
    Glandut N; Monson CF; Majda M
    Langmuir; 2006 Dec; 22(25):10697-704. PubMed ID: 17129048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Nonlinear Rupture Theory of Thin Liquid Films with Soluble Surfactant.
    Lin CK; Hwang CC; Uen WY
    J Colloid Interface Sci; 2000 Nov; 231(2):379-393. PubMed ID: 11049688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
    Johnson DD; Kang B; Vigorita JL; Amram A; Spain EM
    J Phys Chem A; 2008 Oct; 112(39):9318-23. PubMed ID: 18781724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of ionic strength and hardness of water on the non-ionic surfactant-enhanced remediation of perchloroethylene contamination.
    Kim ES; Lee DH; Yum BW; Chang HW
    J Hazard Mater; 2005 Mar; 119(1-3):195-203. PubMed ID: 15752866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-consistent field modeling of non-ionic surfactants at the silica-water interface: incorporating molecular detail.
    Postmus BR; Leermakers FA; Stuart MA
    Langmuir; 2008 Apr; 24(8):3960-9. PubMed ID: 18315021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hofmeister series effect in adsorption of cationic surfactants--theoretical description and experimental results.
    Para G; Jarek E; Warszynski P
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):39-55. PubMed ID: 16905112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of nonionic surfactant partitioning on the dissolution kinetics of residual perchloroethylene in a model porous medium.
    Sharmin R; Ioannidis MA; Legge RL
    J Contam Hydrol; 2006 Jan; 82(1-2):145-64. PubMed ID: 16274842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and desorption of nonionic surfactants on silica from toluene studied by ATR-FTIR.
    Tabor RF; Eastoe J; Dowding P
    Langmuir; 2009 Sep; 25(17):9785-91. PubMed ID: 19705883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marangoni stresses and surface compression rheology of surfactant solutions. Achievements and problems.
    Langevin D; Monroy F
    Adv Colloid Interface Sci; 2014 Apr; 206():141-9. PubMed ID: 24529972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periodic marangoni instability in surfactant (CTAB) liquid/liquid mass transfer.
    Lavabre D; Pradines V; Micheau JC; Pimienta V
    J Phys Chem B; 2005 Apr; 109(15):7582-6. PubMed ID: 16851871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disjoining pressure of thin films stabilized by nonionic surfactants.
    Danov KD; Ivanov IB; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Dec; 128-130():185-215. PubMed ID: 17207762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of a directional Marangoni flow.
    Tregouet C; Saint-Jalmes A
    Soft Matter; 2020 Oct; 16(38):8933-8939. PubMed ID: 32896855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning surface tension and aggregate shape via a novel redox active fluorocarbon-hydrocarbon hybrid surfactant.
    Aydogan N; Aldis N
    Langmuir; 2006 Feb; 22(5):2028-33. PubMed ID: 16489784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-switched amphiphilic ionic liquid behavior in aqueous solution.
    Chamiot B; Rizzi C; Gaillon L; Sirieix-Plénet J; Lelièvre J
    Langmuir; 2009 Feb; 25(3):1311-5. PubMed ID: 19125689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of non-ionic, surface-active substances in aqueous solutions by means of the Controlled Growth Mercury Electrode.
    Baś B; Jakubowska M
    Anal Chim Acta; 2007 Jun; 592(2):218-25. PubMed ID: 17512829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic N-diazeniumdiolates and the aqueous interface of sodium dodecyl sulfate (SDS) micelles.
    Mohr A; Pozo Vila T; Korth HG; Rehage H; Sustmann R
    Chemphyschem; 2008 Nov; 9(16):2397-405. PubMed ID: 18956403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Evidence of the Effect of Evaporation-Condensation on Thermal Marangoni Flows in Aqueous Fatty Alcohol Solutions.
    Azouni MA; Pétré G
    J Colloid Interface Sci; 1998 Oct; 206(1):332-333. PubMed ID: 9761660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.