BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 15752032)

  • 1. Keggin ion mediated synthesis of hydrophobized Pd nanoparticles for multifunctional catalysis.
    Mandal S; Das A; Srivastava R; Sastry M
    Langmuir; 2005 Mar; 21(6):2408-13. PubMed ID: 15752032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keggin ions as UV-switchable reducing agents in the synthesis of Au core-Ag shell nanoparticles.
    Mandal S; Selvakannan PR; Pasricha R; Sastry M
    J Am Chem Soc; 2003 Jul; 125(28):8440-1. PubMed ID: 12848542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic, organically dispersible gold nanoparticles of variable shape produced by the spontaneous reduction of aqueous chloroaurate ions by hexadecylaniline molecules.
    Selvakannan P; Mandal S; Pasricha R; Sastry M
    J Colloid Interface Sci; 2004 Nov; 279(1):124-31. PubMed ID: 15380420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transfer of oleic acid capped Ni(core)Ag(shell) nanoparticles assisted by the flexibility of oleic acid on the surface of silver.
    Bala T; Swami A; Prasad BL; Sastry M
    J Colloid Interface Sci; 2005 Mar; 283(2):422-31. PubMed ID: 15721914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermosensitive water-dispersible hairy particle-supported pd nanoparticles for catalysis of hydrogenation in an aqueous/organic biphasic system.
    Li D; Dunlap JR; Zhao B
    Langmuir; 2008 Jun; 24(11):5911-8. PubMed ID: 18459752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial deposition of Ag on Au seeds leading to AucoreAgshell in organic media.
    Prathap Chandran S; Ghatak J; Satyam PV; Sastry M
    J Colloid Interface Sci; 2007 Aug; 312(2):498-505. PubMed ID: 17434179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of dispersible Pd@CeO(2) core-shell nanostructures by self-assembly.
    Cargnello M; Wieder NL; Montini T; Gorte RJ; Fornasiero P
    J Am Chem Soc; 2010 Feb; 132(4):1402-9. PubMed ID: 20043676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.
    Mazumder V; Sun S
    J Am Chem Soc; 2009 Apr; 131(13):4588-9. PubMed ID: 19281236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanosized (mu12-Pt)Pd164-xPtx(CO)72(PPh3)20 (x approximately 7) containing Pt-centered four-shell 165-atom Pd-Pt core with unprecedented intershell bridging carbonyl ligands: comparative analysis of icosahedral shell-growth patterns with geometrically related Pd145(CO)x(PEt3)30 (x approximately 60) containing capped three-shell Pd145 core.
    Mednikov EG; Jewell MC; Dahl LF
    J Am Chem Soc; 2007 Sep; 129(37):11619-30. PubMed ID: 17722929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of catalytically active porous platinum nanoparticles by transmetallation reaction and proposition of the mechanism.
    Pasricha R; Bala T; Biradar AV; Umbarkar S; Sastry M
    Small; 2009 Jun; 5(12):1467-73. PubMed ID: 19296564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New route for the preparation of Pd and PdAu nanoparticles using photoexcited Ti-containing zeolite as an efficient support material and investigation of their catalytic properties.
    Mori K; Miura Y; Shironita S; Yamashita H
    Langmuir; 2009 Sep; 25(18):11180-7. PubMed ID: 19603770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles.
    Lee WR; Kim MG; Choi JR; Park JI; Ko SJ; Oh SJ; Cheon J
    J Am Chem Soc; 2005 Nov; 127(46):16090-7. PubMed ID: 16287295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of polyoxometalate macroanion-capped pd0 nanoparticles in aqueous solution.
    Zhang J; Keita B; Nadjo L; Mbomekalle IM; Liu T
    Langmuir; 2008 May; 24(10):5277-83. PubMed ID: 18439035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of N,N-dimethyldodecylamine-capped Aucore-Pdshell nanoparticles in toluene.
    Nath S; Praharaj S; Panigrahi S; Ghosh SK; Kundu S; Basu S; Pal T
    Langmuir; 2005 Nov; 21(23):10405-8. PubMed ID: 16262299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction.
    Mazumder V; Chi M; More KL; Sun S
    J Am Chem Soc; 2010 Jun; 132(23):7848-9. PubMed ID: 20496893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle-decorated keggin ions/TiO2 photococatalyst for improved solar light photocatalysis.
    Pearson A; Jani H; Kalantar-zadeh K; Bhargava SK; Bansal V
    Langmuir; 2011 Jun; 27(11):6661-7. PubMed ID: 21534553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionalized gold nanoparticles as phosphorescent nanomaterials and sensors.
    Ipe BI; Yoosaf K; Thomas KG
    J Am Chem Soc; 2006 Feb; 128(6):1907-13. PubMed ID: 16464092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Pd nanoparticles in ionic liquid in the Heck reaction.
    Cassol CC; Umpierre AP; Machado G; Wolke SI; Dupont J
    J Am Chem Soc; 2005 Mar; 127(10):3298-9. PubMed ID: 15755145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.