These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 15752042)
1. Effect of mono-CDNP substitution of lysine residues on the redox reaction of cytochrome c electrostatically adsorbed on a mercaptoheptanoic acid modified Au(111) surface. Imabayashi S; Mita T; Kakiuchi T Langmuir; 2005 Mar; 21(6):2474-9. PubMed ID: 15752042 [TBL] [Abstract][Full Text] [Related]
2. Effect of the electrostatic interaction on the redox reaction of positively charged cytochrome C adsorbed on the negatively charged surfaces of acid-terminated alkanethiol monolayers on a Au(111) electrode. Imabayashi S; Mita T; Kakiuchi T Langmuir; 2005 Feb; 21(4):1470-4. PubMed ID: 15697296 [TBL] [Abstract][Full Text] [Related]
3. Surface-enhanced resonance Raman spectroscopy and spectroscopy study of redox-induced conformational equilibrium of cytochrome c adsorbed on DNA-modified metal electrode. Jiang X; Wang Y; Qu X; Dong S Biosens Bioelectron; 2006 Jul; 22(1):49-55. PubMed ID: 16414257 [TBL] [Abstract][Full Text] [Related]
4. Direct electrochemistry of cytochrome c on a phosphonic acid terminated self-assembled monolayers. Chen Y; Yang XJ; Guo LR; Jin B; Xia XH; Zheng LM Talanta; 2009 Apr; 78(1):248-52. PubMed ID: 19174233 [TBL] [Abstract][Full Text] [Related]
5. Multi-layer electron transfer across nanostructured Ag-SAM-Au-SAM junctions probed by surface enhanced Raman spectroscopy. Sezer M; Feng JJ; Khoa Ly H; Shen Y; Nakanishi T; Kuhlmann U; Hildebrandt P; Möhwald H; Weidinger IM Phys Chem Chem Phys; 2010 Sep; 12(33):9822-9. PubMed ID: 20544071 [TBL] [Abstract][Full Text] [Related]
6. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner. Bernad S; Soulimane T; Mehkalif Z; Lecomte S Biopolymers; 2006 Apr; 81(5):407-18. PubMed ID: 16365847 [TBL] [Abstract][Full Text] [Related]
7. Voltammetric investigation of cytochrome c on gold coated with a self-assembled glutathione monolayer. Wu Y; Hu S Bioelectrochemistry; 2006 Jan; 68(1):105-12. PubMed ID: 16043421 [TBL] [Abstract][Full Text] [Related]
8. Electrochemical study of the interaction between cytochrome c and DNA at a modified gold electrode. Ding X; Li J; Hu J; Li Q Anal Biochem; 2005 Apr; 339(1):46-53. PubMed ID: 15766709 [TBL] [Abstract][Full Text] [Related]
9. Molecular basis of coupled protein and electron transfer dynamics of cytochrome c in biomimetic complexes. Alvarez-Paggi D; Martín DF; DeBiase PM; Hildebrandt P; Martí MA; Murgida DH J Am Chem Soc; 2010 Apr; 132(16):5769-78. PubMed ID: 20361782 [TBL] [Abstract][Full Text] [Related]
10. Effects of mutational (Lys to Ala) surface charge changes on the redox properties of electrode-immobilized cytochrome c. Battistuzzi G; Borsari M; Bortolotti CA; Di Rocco G; Ranieri A; Sola M J Phys Chem B; 2007 Aug; 111(34):10281-7. PubMed ID: 17685644 [TBL] [Abstract][Full Text] [Related]
11. Electron-transfer reactions through the associated interaction between cytochrome c and self-assembled monolayers of optically active cobalt(III) complexes: molecular recognition ability induced by the chirality of the cobalt(III) units. Takahashi I; Inomata T; Funahashi Y; Ozawa T; Masuda H Chemistry; 2007; 13(28):8007-17. PubMed ID: 17616958 [TBL] [Abstract][Full Text] [Related]
12. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry. Nakano K; Yoshitake T; Yamashita Y; Bowden EF Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603 [TBL] [Abstract][Full Text] [Related]
13. Biosensor based on chemically-designed anchorable cytochrome c for the detection of H₂O₂ released by aquatic cells. Suárez G; Santschi C; Martin OJ; Slaveykova VI Biosens Bioelectron; 2013 Apr; 42():385-90. PubMed ID: 23220065 [TBL] [Abstract][Full Text] [Related]
14. Cytochrome c superstructure biocomposite nucleated by gold nanoparticle: thermal stability and voltammetric behavior. Jiang X; Shang L; Wang Y; Dong S Biomacromolecules; 2005; 6(6):3030-6. PubMed ID: 16283723 [TBL] [Abstract][Full Text] [Related]
15. Monolayer-protected nanoparticle film assemblies as platforms for controlling interfacial and adsorption properties in protein monolayer electrochemistry. Loftus AF; Reighard KP; Kapourales SA; Leopold MC J Am Chem Soc; 2008 Feb; 130(5):1649-61. PubMed ID: 18189391 [TBL] [Abstract][Full Text] [Related]
16. Unexpected retention of electrostatically adsorbed cytochrome c in high ionic strength solutions. DiCarlo CM; Compton DL Chem Commun (Camb); 2005 Jan; (2):218-20. PubMed ID: 15724191 [TBL] [Abstract][Full Text] [Related]
17. pH-Induced changes in adsorbed cytochrome c. voltammetric and surface-enhanced resonance Raman characterization performed simultaneously at chemically modified silver electrodes. Millo D; Bonifacio A; Ranieri A; Borsari M; Gooijer C; van der Zwan G Langmuir; 2007 Sep; 23(19):9898-904. PubMed ID: 17685564 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of intramolecular electron transfer in the photoexcited Zn-substituted cytochrome c: theoretical and experimental perspective. Tokita Y; Shimura J; Nakajima H; Goto Y; Watanabe Y J Am Chem Soc; 2008 Apr; 130(15):5302-10. PubMed ID: 18348525 [TBL] [Abstract][Full Text] [Related]
19. Impact of surface immobilization and solution ionic strength on the formal potential of immobilized cytochrome C. Petrović J; Clark RA; Yue H; Waldeck DH; Bowden EF Langmuir; 2005 Jul; 21(14):6308-16. PubMed ID: 15982036 [TBL] [Abstract][Full Text] [Related]
20. Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c4 assembled on Au(111) surfaces. Chi Q; Zhang J; Arslan T; Borg L; Pedersen GW; Christensen HE; Nazmudtinov RR; Ulstrup J J Phys Chem B; 2010 Apr; 114(16):5617-24. PubMed ID: 20359200 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]