BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 15752201)

  • 1. Evidence for non-enzymatic glycosylation of Escherichia coli chromosomal DNA.
    Mironova R; Niwa T; Handzhiyski Y; Sredovska A; Ivanov I
    Mol Microbiol; 2005 Mar; 55(6):1801-11. PubMed ID: 15752201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autofluorescence characterization of advanced glycation end products of hemoglobin.
    Vigneshwaran N; Bijukumar G; Karmakar N; Anand S; Misra A
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):163-70. PubMed ID: 15556435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-physical characterization of ribose induced glycation: a mechanistic study on DNA perturbations.
    Akhter F; Salman Khan M; Shahab U; Moinuddin ; Ahmad S
    Int J Biol Macromol; 2013 Jul; 58():206-10. PubMed ID: 23524157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preferential recognition of Amadori-rich lysine residues by serum antibodies in diabetes mellitus: role of protein glycation in the disease process.
    Ansari NA; Moinuddin ; Alam K; Ali A
    Hum Immunol; 2009 Jun; 70(6):417-24. PubMed ID: 19332092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl)lysine and argpyrimidine.
    van Heijst JW; Niessen HW; Hoekman K; Schalkwijk CG
    Ann N Y Acad Sci; 2005 Jun; 1043():725-33. PubMed ID: 16037299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for non-enzymatic glycosylation in Escherichia coli.
    Mironova R; Niwa T; Hayashi H; Dimitrova R; Ivanov I
    Mol Microbiol; 2001 Feb; 39(4):1061-8. PubMed ID: 11251824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assay of advanced glycation endproducts in selected beverages and food by liquid chromatography with tandem mass spectrometric detection.
    Ahmed N; Mirshekar-Syahkal B; Kennish L; Karachalias N; Babaei-Jadidi R; Thornalley PJ
    Mol Nutr Food Res; 2005 Jul; 49(7):691-9. PubMed ID: 15945118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of degradation pathways of Amadori compounds obtained by glycation of opioid pentapeptide and related smaller fragments: stability, reactions, and spectroscopic properties.
    Jakas A; Horvat S
    Biopolymers; 2003 Aug; 69(4):421-31. PubMed ID: 12879488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in the glycation of human aortic elastin.
    Konova E; Baydanoff S; Atanasova M; Velkova A
    Exp Gerontol; 2004 Feb; 39(2):249-54. PubMed ID: 15036419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the extent of protein damage in dairy products: simultaneous determination of early and advanced glycation-induced lysine modifications.
    Hegele J; Parisod V; Richoz J; Förster A; Maurer S; Krause R; Henle T; Bütler T; Delatour T
    Ann N Y Acad Sci; 2008 Apr; 1126():300-6. PubMed ID: 18448835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.
    Meltretter J; Pischetsrieder M
    Ann N Y Acad Sci; 2008 Apr; 1126():134-40. PubMed ID: 18448807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced glycation endproducts: what is their relevance to diabetic complications?
    Ahmed N; Thornalley PJ
    Diabetes Obes Metab; 2007 May; 9(3):233-45. PubMed ID: 17391149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and characterization of recombinant C-terminal biotinylated extracellular domain of human receptor for advanced glycation end products (hsRAGE) in Escherichia coli.
    Kumano-Kuramochi M; Xie Q; Sakakibara Y; Niimi S; Sekizawa K; Komba S; Machida S
    J Biochem; 2008 Feb; 143(2):229-36. PubMed ID: 18032414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteins of Thermus thermophilus are resistant to glycation-induced protein precipitation: an evolutionary adaptation to life at extreme temperatures?
    Münch G; Berbaum K; Urban C; Schinzel R
    Ann N Y Acad Sci; 2005 Jun; 1043():865-75. PubMed ID: 16037313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and biological relevance of advanced glycation end-products of DNA in eukaryotic cells.
    Breyer V; Frischmann M; Bidmon C; Schemm A; Schiebel K; Pischetsrieder M
    FEBS J; 2008 Mar; 275(5):914-25. PubMed ID: 18215162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonenzymatic glycation of DNA nucleosides with reducing sugars.
    Dutta U; Cohenford MA; Dain JA
    Anal Biochem; 2005 Oct; 345(2):171-80. PubMed ID: 16143291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic deglycation of Amadori products in bacteria: mechanisms, occurrence and physiological functions.
    Deppe VM; Bongaerts J; O'Connell T; Maurer KH; Meinhardt F
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):399-406. PubMed ID: 21347729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of DNA-bound advanced glycation end-products by LC and mass spectrometry.
    Bidmon C; Frischmann M; Pischetsrieder M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Aug; 855(1):51-8. PubMed ID: 17161667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced glycation end products accumulate in the reproductive tract of men with diabetes.
    Mallidis C; Agbaje IM; Rogers DA; Glenn JV; Pringle R; Atkinson AB; Steger K; Stitt AW; McClure N
    Int J Androl; 2009 Aug; 32(4):295-305. PubMed ID: 18217985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products.
    Hegele J; Buetler T; Delatour T
    Anal Chim Acta; 2008 Jun; 617(1-2):85-96. PubMed ID: 18486644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.