These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 15752367)
1. An engineered disulfide bridge mimics the effect of calcium to protect neutral protease against local unfolding. Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R FEBS J; 2005 Mar; 272(6):1523-34. PubMed ID: 15752367 [TBL] [Abstract][Full Text] [Related]
2. Refolding of the non-specific neutral protease from Bacillus stearothermophilus proceeds via an autoproteolytically sensitive intermediate. Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R Biophys Chem; 2010 Mar; 147(1-2):66-73. PubMed ID: 20096501 [TBL] [Abstract][Full Text] [Related]
3. Differentiation between conformational and autoproteolytic stability of the neutral protease from Bacillus stearothermophilus containing an engineered disulfide bond. Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R Eur J Biochem; 2001 Jun; 268(12):3612-8. PubMed ID: 11422393 [TBL] [Abstract][Full Text] [Related]
4. The transition state in the folding-unfolding reaction of four species of three-disulfide variant of hen lysozyme: the role of each disulfide bridge. Yokota A; Izutani K; Takai M; Kubo Y; Noda Y; Koumoto Y; Tachibana H; Segawa S J Mol Biol; 2000 Feb; 295(5):1275-88. PubMed ID: 10653703 [TBL] [Abstract][Full Text] [Related]
5. Disulfide formation and stability of a cysteine-rich repeat protein from Helicobacter pylori. Devi VS; Sprecher CB; Hunziker P; Mittl PR; Bosshard HR; Jelesarov I Biochemistry; 2006 Feb; 45(6):1599-607. PubMed ID: 16460007 [TBL] [Abstract][Full Text] [Related]
6. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics. Mansfeld J; Ulbrich-Hofmann R Biotechnol Appl Biochem; 2000 Dec; 32(3):189-95. PubMed ID: 11115391 [TBL] [Abstract][Full Text] [Related]
7. The stability of engineered thermostable neutral proteases from Bacillus stearothermophilus in organic solvents and detergents. Mansfeld J; Ulbrich-Hofmann R Biotechnol Bioeng; 2007 Jul; 97(4):672-9. PubMed ID: 17163509 [TBL] [Abstract][Full Text] [Related]
8. The location of an engineered inter-subunit disulfide bond in factor for inversion stimulation (FIS) affects the denaturation pathway and cooperativity. Meinhold D; Beach M; Shao Y; Osuna R; Colón W Biochemistry; 2006 Aug; 45(32):9767-77. PubMed ID: 16893178 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional consequences of removal of the interdomain disulfide bridge from the isolated C-lobe of ovotransferrin. Muralidhara BK; Hirose M Protein Sci; 2000 Aug; 9(8):1567-75. PubMed ID: 10975578 [TBL] [Abstract][Full Text] [Related]
10. Denaturant-assisted formation of a stabilizing disulfide bridge from engineered cysteines in nonideal conformations. Karlsson M; Mårtensson LG; Karlsson C; Carlsson U Biochemistry; 2005 Mar; 44(9):3487-93. PubMed ID: 15736958 [TBL] [Abstract][Full Text] [Related]
11. Engineered disulfide bonds in staphylococcal nuclease: effects on the stability and conformation of the folded protein. Hinck AP; Truckses DM; Markley JL Biochemistry; 1996 Aug; 35(32):10328-38. PubMed ID: 8756688 [TBL] [Abstract][Full Text] [Related]
12. Equilibrium hydrogen exchange reveals extensive hydrogen bonded secondary structure in the on-pathway intermediate of Im7. Gorski SA; Le Duff CS; Capaldi AP; Kalverda AP; Beddard GS; Moore GR; Radford SE J Mol Biol; 2004 Mar; 337(1):183-93. PubMed ID: 15001361 [TBL] [Abstract][Full Text] [Related]
13. The extreme thermostable pyrophosphatase from Sulfolobus acidocaldarius: enzymatic and comparative biophysical characterization. Hansen T; Urbanke C; Leppänen VM; Goldman A; Brandenburg K; Schäfer G Arch Biochem Biophys; 1999 Mar; 363(1):135-47. PubMed ID: 10049508 [TBL] [Abstract][Full Text] [Related]
14. Unfolding and pH studies on manganese peroxidase: role of heme and calcium on secondary structure stability. Banci L; Bartalesi I; Ciofi-Baffoni S; Tien M Biopolymers; 2003; 72(1):38-47. PubMed ID: 12400090 [TBL] [Abstract][Full Text] [Related]
15. Structural stability and unfolding properties of thermostable bacterial alpha-amylases: a comparative study of homologous enzymes. Fitter J; Haber-Pohlmeier S Biochemistry; 2004 Aug; 43(30):9589-99. PubMed ID: 15274613 [TBL] [Abstract][Full Text] [Related]
16. Effects of site-directed mutagenesis in the N-terminal domain of thermolysin on its stabilization. Kawasaki Y; Yasukawa K; Inouye K J Biochem; 2013 Jan; 153(1):85-92. PubMed ID: 23087322 [TBL] [Abstract][Full Text] [Related]
17. How do chemical denaturants affect the mechanical folding and unfolding of proteins? Cao Y; Li H J Mol Biol; 2008 Jan; 375(1):316-24. PubMed ID: 18021802 [TBL] [Abstract][Full Text] [Related]
18. Revealing a concealed intermediate that forms after the rate-limiting step of refolding of the SH3 domain of PI3 kinase. Wani AH; Udgaonkar JB J Mol Biol; 2009 Mar; 387(2):348-62. PubMed ID: 19356591 [TBL] [Abstract][Full Text] [Related]
19. Crystal structure of the disulfide bond-deficient azurin mutant C3A/C26A: how important is the S-S bond for folding and stability? Bonander N; Leckner J; Guo H; Karlsson BG; Sjölin L Eur J Biochem; 2000 Jul; 267(14):4511-9. PubMed ID: 10880975 [TBL] [Abstract][Full Text] [Related]
20. Changing the determinants of protein stability from covalent to non-covalent interactions by in vitro evolution: a structural and energetic analysis. Kather I; Jakob R; Dobbek H; Schmid FX J Mol Biol; 2008 Sep; 381(4):1040-54. PubMed ID: 18621056 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]