These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 15752616)

  • 1. Empirical parametrization of pK values for carboxylic acids in proteins using a genetic algorithm.
    Godoy-Ruiz R; Perez-Jimenez R; Garcia-Mira MM; Plaza del Pino IM; Sanchez-Ruiz JM
    Biophys Chem; 2005 Apr; 115(2-3):263-6. PubMed ID: 15752616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved pK(a) prediction: combining empirical and semimicroscopic methods.
    Kieseritzky G; Knapp EW
    J Comput Chem; 2008 Nov; 29(15):2575-81. PubMed ID: 18470967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting protein pK(a) by environment similarity.
    Milletti F; Storchi L; Cruciani G
    Proteins; 2009 Aug; 76(2):484-95. PubMed ID: 19241472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical relationships between protein structure and carboxyl pKa values in proteins.
    Forsyth WR; Antosiewicz JM; Robertson AD
    Proteins; 2002 Aug; 48(2):388-403. PubMed ID: 12112705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of pKa values for aliphatic carboxylic acids and alcohols with empirical atomic charge descriptors.
    Zhang J; Kleinöder T; Gasteiger J
    J Chem Inf Model; 2006; 46(6):2256-66. PubMed ID: 17125168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing pKa computation in proteins with pH adapted conformations.
    Kieseritzky G; Knapp EW
    Proteins; 2008 May; 71(3):1335-48. PubMed ID: 18058906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PPD v1.0--an integrated, web-accessible database of experimentally determined protein pKa values.
    Toseland CP; McSparron H; Davies MN; Flower DR
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D199-203. PubMed ID: 16381845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple clustering algorithm can be accurate enough for use in calculations of pKs in macromolecules.
    Myers J; Grothaus G; Narayanan S; Onufriev A
    Proteins; 2006 Jun; 63(4):928-38. PubMed ID: 16493626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear-scaling molecular orbital calculations for the pKa values of ionizable residues in proteins.
    Ohno K; Sakurai M
    J Comput Chem; 2006 May; 27(7):906-16. PubMed ID: 16550537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic polarization is crucial for reproducing pKa shifts of carboxylic residues in Turkey ovomucoid third domain.
    Macdermaid CM; Kaminski GA
    J Phys Chem B; 2007 Aug; 111(30):9036-44. PubMed ID: 17602581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast empirical pKa prediction by Ewald summation.
    Krieger E; Nielsen JE; Spronk CA; Vriend G
    J Mol Graph Model; 2006 Dec; 25(4):481-6. PubMed ID: 16644253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A parameterized, continuum electrostatic model for predicting protein pKa values.
    Burger SK; Ayers PW
    Proteins; 2011 Jul; 79(7):2044-52. PubMed ID: 21557315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes.
    Czodrowski P; Dramburg I; Sotriffer CA; Klebe G
    Proteins; 2006 Nov; 65(2):424-37. PubMed ID: 16927370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein electrostatics and pKa blind predictions; contribution from empirical predictions of internal ionizable residues.
    Olsson MH
    Proteins; 2011 Dec; 79(12):3333-45. PubMed ID: 22072518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the charge space of protein-protein association: a proteomic study.
    Shaul Y; Schreiber G
    Proteins; 2005 Aug; 60(3):341-52. PubMed ID: 15887221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polar group enhanced gas-phase acidities of carboxylic acids: an investigation of intramolecular electrostatic interaction.
    Ren J
    J Phys Chem A; 2006 Dec; 110(50):13405-11. PubMed ID: 17165865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease.
    Baran KL; Chimenti MS; Schlessman JL; Fitch CA; Herbst KJ; Garcia-Moreno BE
    J Mol Biol; 2008 Jun; 379(5):1045-62. PubMed ID: 18499123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.