These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 15752859)

  • 1. Characterization of the catalytic films formed on stainless steel anodes employed for the electrochemical treatment of cuprocyanide wastewaters.
    Szpyrkowicz L; Ricci F; Montemor MF; Souto RM
    J Hazard Mater; 2005 Mar; 119(1-3):145-52. PubMed ID: 15752859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of cyanides by electrooxidation.
    Szpyrkowicz L; Ricci F; Daniele S
    Ann Chim; 2003; 93(9-10):833-40. PubMed ID: 14672377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical treatment of aqueous wastes containing pyrogallol by BDD-anodic oxidation.
    Nasr B; Hsen T; Abdellatif G
    J Environ Manage; 2009 Jan; 90(1):523-30. PubMed ID: 18336990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical degradation of 1,2- dichloroethane (DCA) in a synthetic groundwater medium using stainless-steel electrodes.
    Bejankiwar R; Lalman JA; Seth R; Biswas N
    Water Res; 2005 Nov; 39(19):4715-24. PubMed ID: 16289674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, characterization and photocatalytic properties of Cu-loaded BiVO(4).
    Xu H; Li H; Wu C; Chu J; Yan Y; Shu H; Gu Z
    J Hazard Mater; 2008 May; 153(1-2):877-84. PubMed ID: 18029088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol.
    Kim KH; Ihm SK
    J Hazard Mater; 2007 Jul; 146(3):610-6. PubMed ID: 17513049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte.
    Dutra AJ; Rocha GP; Pombo FR
    J Hazard Mater; 2008 Apr; 152(2):648-55. PubMed ID: 17728063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.
    Valkaj KM; Katovic A; Zrncević S
    J Hazard Mater; 2007 Jun; 144(3):663-7. PubMed ID: 17416460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of Cr(VI) from wastewaters at semi-industrial electrochemical reactors with rotating ring electrodes.
    Rodríguez R MG; Mendoza V; Puebla H; Martínez D SA
    J Hazard Mater; 2009 Apr; 163(2-3):1221-9. PubMed ID: 18775602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of TiO2 and aeration on the kinetics of electrochemical oxidation of phenol in packed bed reactor.
    Wang L; Zhao Y; Fu J
    J Hazard Mater; 2008 Dec; 160(2-3):608-13. PubMed ID: 18434001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes.
    Cañizares P; Lobato J; Paz R; Rodrigo MA; Sáez C
    Water Res; 2005 Jul; 39(12):2687-703. PubMed ID: 15979123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical advanced oxidation process using DiaChem electrodes.
    Tröster I; Schäfer L; Fryda M; Matthée T
    Water Sci Technol; 2004; 49(4):207-12. PubMed ID: 15077973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical oxidation of drug residues in water by the example of tetracycline, gentamicine and aspirin.
    Weichgrebe D; Danilova E; Rosenwinkel KH; Vedenjapin AA; Baturova M
    Water Sci Technol; 2004; 49(4):201-6. PubMed ID: 15077972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation.
    Modirshahla N; Behnajady MA; Mohammadi-Aghdam S
    J Hazard Mater; 2008 Jun; 154(1-3):778-86. PubMed ID: 18162293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of cyanide from dilute solution using a cell with three-phase three-dimensional electrode.
    Xiong Y; Zhong Q; An T; Li Y; Cha Z; Zhu X
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(4):715-24. PubMed ID: 12046668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical detoxification of four phosphorothioate obsolete pesticides stocks.
    Vlyssides A; Arapoglou D; Mai S; Barampouti EM
    Chemosphere; 2005 Jan; 58(4):439-47. PubMed ID: 15620735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of anode material on electrochemical oxidation for the treatment of tannery wastewater.
    Szpyrkowicz L; Kaul SN; Neti RN; Satyanarayan S
    Water Res; 2005 Apr; 39(8):1601-13. PubMed ID: 15878033
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydrodynamic conditions on OH radical production at Ti/Pt anodes during electrochemical treatment.
    Kishimoto N; Minakata D; Somiya I
    Environ Technol; 2005 Oct; 26(10):1161-71. PubMed ID: 16342538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.
    Algarra M; Jiménez MV; Rodríguez-Castellón E; Jiménez-López A; Jiménez-Jiménez J
    Chemosphere; 2005 May; 59(6):779-86. PubMed ID: 15811406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems.
    Christoskova S; Stoyanova M
    J Hazard Mater; 2009 Jun; 165(1-3):690-5. PubMed ID: 19038496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.