BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15753087)

  • 1. From ATP as substrate to ADP as coenzyme: functional evolution of the nucleotide binding subunit of dihydroxyacetone kinases.
    Bächler C; Flükiger-Brühwiler K; Schneider P; Bähler P; Erni B
    J Biol Chem; 2005 May; 280(18):18321-5. PubMed ID: 15753087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the nucleotide-binding subunit DhaL of the Escherichia coli dihydroxyacetone kinase.
    Oberholzer AE; Schneider P; Baumann U; Erni B
    J Mol Biol; 2006 Jun; 359(3):539-45. PubMed ID: 16647083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphoenolpyruvate- and ATP-dependent dihydroxyacetone kinases: covalent substrate-binding and kinetic mechanism.
    Garcia-Alles LF; Siebold C; Nyffeler TL; Flükiger-Brühwiler K; Schneider P; Bürgi HB; Baumann U; Erni B
    Biochemistry; 2004 Oct; 43(41):13037-45. PubMed ID: 15476397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small substrate, big surprise: fold, function and phylogeny of dihydroxyacetone kinases.
    Erni B; Siebold C; Christen S; Srinivas A; Oberholzer A; Baumann U
    Cell Mol Life Sci; 2006 Apr; 63(7-8):890-900. PubMed ID: 16505971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and mechanistic insight into covalent substrate binding by Escherichia coli dihydroxyacetone kinase.
    Shi R; McDonald L; Cui Q; Matte A; Cygler M; Ekiel I
    Proc Natl Acad Sci U S A; 2011 Jan; 108(4):1302-7. PubMed ID: 21209328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Escherichia coli dihydroxyacetone kinase controls gene expression by binding to transcription factor DhaR.
    Bächler C; Schneider P; Bähler P; Lustig A; Erni B
    EMBO J; 2005 Jan; 24(2):283-93. PubMed ID: 15616579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the Citrobacter freundii dihydroxyacetone kinase reveals an eight-stranded alpha-helical barrel ATP-binding domain.
    Siebold C; Arnold I; Garcia-Alles LF; Baumann U; Erni B
    J Biol Chem; 2003 Nov; 278(48):48236-44. PubMed ID: 12966101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleotide binding site communication in Arabidopsis thaliana adenosine 5'-phosphosulfate kinase.
    Ravilious GE; Jez JM
    J Biol Chem; 2012 Aug; 287(36):30385-94. PubMed ID: 22810229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray structures of the three Lactococcus lactis dihydroxyacetone kinase subunits and of a transient intersubunit complex.
    Zurbriggen A; Jeckelmann JM; Christen S; Bieniossek C; Baumann U; Erni B
    J Biol Chem; 2008 Dec; 283(51):35789-96. PubMed ID: 18957416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dihydroxyacetone kinase of Escherichia coli utilizes a phosphoprotein instead of ATP as phosphoryl donor.
    Gutknecht R; Beutler R; Garcia-Alles LF; Baumann U; Erni B
    EMBO J; 2001 May; 20(10):2480-6. PubMed ID: 11350937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enterococcus faecalis mevalonate kinase.
    Hedl M; Rodwell VW
    Protein Sci; 2004 Mar; 13(3):687-93. PubMed ID: 14767074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the ADP-specificity of a novel glucokinase from a hyperthermophilic archaeon.
    Ito S; Fushinobu S; Yoshioka I; Koga S; Matsuzawa H; Wakagi T
    Structure; 2001 Mar; 9(3):205-14. PubMed ID: 11286887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of nucleotide cofactors with the Escherichia coli replication factor DnaC protein.
    Galletto R; Rajendran S; Bujalowski W
    Biochemistry; 2000 Oct; 39(42):12959-69. PubMed ID: 11041861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Schizosaccharomyces pombe riboflavin kinase reveals a novel ATP and riboflavin-binding fold.
    Bauer S; Kemter K; Bacher A; Huber R; Fischer M; Steinbacher S
    J Mol Biol; 2003 Mar; 326(5):1463-73. PubMed ID: 12595258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox-linked gating of nucleotide binding by the N-terminal domain of adenosine 5'-phosphosulfate kinase.
    Ravilious GE; Westfall CS; Jez JM
    J Biol Chem; 2013 Mar; 288(9):6107-15. PubMed ID: 23322773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for the hydrolysis of ATP by a nucleotide binding subunit of an amino acid ABC transporter from Thermus thermophilus.
    Devi SK; Chichili VP; Jeyakanthan J; Velmurugan D; Sivaraman J
    J Struct Biol; 2015 Jun; 190(3):367-72. PubMed ID: 25916755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energetics of nucleotide-induced DnaK conformational states.
    Taneva SG; Moro F; Velázquez-Campoy A; Muga A
    Biochemistry; 2010 Feb; 49(6):1338-45. PubMed ID: 20078127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extremely conserved ATP- or ADP-dependent enzymatic system for nicotinamide nucleotide repair.
    Marbaix AY; Noël G; Detroux AM; Vertommen D; Van Schaftingen E; Linster CL
    J Biol Chem; 2011 Dec; 286(48):41246-41252. PubMed ID: 21994945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mechanism of covalent substrate binding in the x-ray structure of subunit K of the Escherichia coli dihydroxyacetone kinase.
    Siebold C; García-Alles LF; Erni B; Baumann U
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8188-92. PubMed ID: 12813127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein topology determines substrate-binding mechanism in homologous enzymes.
    Herrera-Morande A; Castro-Fernández V; Merino F; Ramírez-Sarmiento CA; Fernández FJ; Vega MC; Guixé V
    Biochim Biophys Acta Gen Subj; 2018 Dec; 1862(12):2869-2878. PubMed ID: 30251675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.