These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 15753555)
1. Unraveling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. D'Hont A Cytogenet Genome Res; 2005; 109(1-3):27-33. PubMed ID: 15753555 [TBL] [Abstract][Full Text] [Related]
2. Genome remodelling in three modern S. officinarumxS. spontaneum sugarcane cultivars. Cuadrado A; Acevedo R; Moreno Díaz de la Espina S; Jouve N; de la Torre C J Exp Bot; 2004 Apr; 55(398):847-54. PubMed ID: 14990623 [TBL] [Abstract][Full Text] [Related]
4. Inference of subgenomic origin of BACs in an interspecific hybrid sugarcane cultivar by overlapping oligonucleotide hybridizations. Kim C; Robertson JS; Paterson AH Genome; 2011 Sep; 54(9):727-37. PubMed ID: 21883018 [TBL] [Abstract][Full Text] [Related]
5. Characterization of a Saccharum spontaneum with a basic chromosome number of x = 10 provides new insights on genome evolution in genus Saccharum. Meng Z; Han J; Lin Y; Zhao Y; Lin Q; Ma X; Wang J; Zhang M; Zhang L; Yang Q; Wang K Theor Appl Genet; 2020 Jan; 133(1):187-199. PubMed ID: 31587087 [TBL] [Abstract][Full Text] [Related]
6. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Piperidis G; Piperidis N; D'Hont A Mol Genet Genomics; 2010 Jul; 284(1):65-73. PubMed ID: 20532565 [TBL] [Abstract][Full Text] [Related]
7. Genetic variability among the chloroplast genomes of sugarcane (Saccharum spp) and its wild progenitor species Saccharum spontaneum L. Zhu JR; Zhou H; Pan YB; Lu X Genet Mol Res; 2014 Jan; 13(2):3037-47. PubMed ID: 24615073 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. D'Hont A; Grivet L; Feldmann P; Rao S; Berding N; Glaszmann JC Mol Gen Genet; 1996 Mar; 250(4):405-13. PubMed ID: 8602157 [TBL] [Abstract][Full Text] [Related]
9. Flow cytometric characterisation of the complex polyploid genome of Saccharum officinarum and modern sugarcane cultivars. Metcalfe CJ; Li J; Giorgi D; Doležel J; Piperidis N; Aitken KS Sci Rep; 2019 Dec; 9(1):19362. PubMed ID: 31852940 [TBL] [Abstract][Full Text] [Related]
10. Comparative structural analysis of Bru1 region homeologs in Saccharum spontaneum and S. officinarum. Zhang J; Sharma A; Yu Q; Wang J; Li L; Zhu L; Zhang X; Chen Y; Ming R BMC Genomics; 2016 Jun; 17():446. PubMed ID: 27287040 [TBL] [Abstract][Full Text] [Related]
11. Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Jannoo N; Grivet L; Chantret N; Garsmeur O; Glaszmann JC; Arruda P; D'Hont A Plant J; 2007 May; 50(4):574-85. PubMed ID: 17425713 [TBL] [Abstract][Full Text] [Related]
12. Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Jannoo N; Grivet L; David J; D'Hont A; Glaszmann JC Heredity (Edinb); 2004 Nov; 93(5):460-7. PubMed ID: 15292909 [TBL] [Abstract][Full Text] [Related]
13. Three founding ancestral genomes involved in the origin of sugarcane. Pompidor N; Charron C; Hervouet C; Bocs S; Droc G; Rivallan R; Manez A; Mitros T; Swaminathan K; Glaszmann JC; Garsmeur O; D'Hont A Ann Bot; 2021 May; 127(6):827-840. PubMed ID: 33637991 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Wang K; Cheng H; Han J; Esh A; Liu J; Zhang Y; Wang B Chromosome Res; 2022 Mar; 30(1):29-41. PubMed ID: 34988746 [TBL] [Abstract][Full Text] [Related]
15. Species-specific abundant retrotransposons elucidate the genomic composition of modern sugarcane cultivars. Huang Y; Chen H; Han J; Zhang Y; Ma S; Yu G; Wang Z; Wang K Chromosoma; 2020 Mar; 129(1):45-55. PubMed ID: 31848693 [TBL] [Abstract][Full Text] [Related]
16. Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Maluszynska J; Hasterok R Cytogenet Genome Res; 2005; 109(1-3):310-4. PubMed ID: 15753591 [TBL] [Abstract][Full Text] [Related]
17. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Zhang J; Zhang X; Tang H; Zhang Q; Hua X; Ma X; Zhu F; Jones T; Zhu X; Bowers J; Wai CM; Zheng C; Shi Y; Chen S; Xu X; Yue J; Nelson DR; Huang L; Li Z; Xu H; Zhou D; Wang Y; Hu W; Lin J; Deng Y; Pandey N; Mancini M; Zerpa D; Nguyen JK; Wang L; Yu L; Xin Y; Ge L; Arro J; Han JO; Chakrabarty S; Pushko M; Zhang W; Ma Y; Ma P; Lv M; Chen F; Zheng G; Xu J; Yang Z; Deng F; Chen X; Liao Z; Zhang X; Lin Z; Lin H; Yan H; Kuang Z; Zhong W; Liang P; Wang G; Yuan Y; Shi J; Hou J; Lin J; Jin J; Cao P; Shen Q; Jiang Q; Zhou P; Ma Y; Zhang X; Xu R; Liu J; Zhou Y; Jia H; Ma Q; Qi R; Zhang Z; Fang J; Fang H; Song J; Wang M; Dong G; Wang G; Chen Z; Ma T; Liu H; Dhungana SR; Huss SE; Yang X; Sharma A; Trujillo JH; Martinez MC; Hudson M; Riascos JJ; Schuler M; Chen LQ; Braun DM; Li L; Yu Q; Wang J; Wang K; Schatz MC; Heckerman D; Van Sluys MA; Souza GM; Moore PH; Sankoff D; VanBuren R; Paterson AH; Nagai C; Ming R Nat Genet; 2018 Nov; 50(11):1565-1573. PubMed ID: 30297971 [TBL] [Abstract][Full Text] [Related]
18. Construction of a genetic linkage map for Saccharum officinarum incorporating both simplex and duplex markers to increase genome coverage. Aitken KS; Jackson PA; McIntyre CL Genome; 2007 Aug; 50(8):742-56. PubMed ID: 17893734 [TBL] [Abstract][Full Text] [Related]
19. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Piperidis N; Chen JW; Deng HH; Wang LP; Jackson P; Piperidis G Genome; 2010 May; 53(5):331-6. PubMed ID: 20616864 [TBL] [Abstract][Full Text] [Related]