These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 15754148)
1. Surface modification of starch based blends using potassium permanganate-nitric acid system and its effect on the adhesion and proliferation of osteoblast-like cells. Pashkuleva I; Marques AP; Vaz F; Reis RL J Mater Sci Mater Med; 2005 Jan; 16(1):81-92. PubMed ID: 15754148 [TBL] [Abstract][Full Text] [Related]
2. Modulating bone cells response onto starch-based biomaterials by surface plasma treatment and protein adsorption. Alves CM; Yang Y; Carnes DL; Ong JL; Sylvia VL; Dean DD; Agrawal CM; Reis RL Biomaterials; 2007 Jan; 28(2):307-15. PubMed ID: 17011619 [TBL] [Abstract][Full Text] [Related]
3. Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. Salgado AJ; Figueiredo JE; Coutinho OP; Reis RL J Mater Sci Mater Med; 2005 Mar; 16(3):267-75. PubMed ID: 15744619 [TBL] [Abstract][Full Text] [Related]
4. Effect of starch-based biomaterials on the in vitro proliferation and viability of osteoblast-like cells. Marques AP; Cruz HR; Coutinho OP; Reis RL J Mater Sci Mater Med; 2005 Sep; 16(9):833-42. PubMed ID: 16167112 [TBL] [Abstract][Full Text] [Related]
5. Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. Vitale-Brovarone C; Vernè E; Bosetti M; Appendino P; Cannas M J Mater Sci Mater Med; 2005 Oct; 16(10):909-17. PubMed ID: 16167099 [TBL] [Abstract][Full Text] [Related]
6. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process. Tuzlakoglu K; Reis RL J Mater Sci Mater Med; 2007 Jul; 18(7):1279-86. PubMed ID: 17431748 [TBL] [Abstract][Full Text] [Related]
7. Characterization of titanium surfaces with calcium and phosphate and osteoblast adhesion. Feng B; Weng J; Yang BC; Qu SX; Zhang XD Biomaterials; 2004 Aug; 25(17):3421-8. PubMed ID: 15020115 [TBL] [Abstract][Full Text] [Related]
8. The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line. Silva GA; Coutinho OP; Ducheyne P; Shapiro IM; Reis RL Biomaterials; 2007 Jan; 28(2):326-34. PubMed ID: 16876242 [TBL] [Abstract][Full Text] [Related]
9. Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro. Akay G; Birch MA; Bokhari MA Biomaterials; 2004 Aug; 25(18):3991-4000. PubMed ID: 15046889 [TBL] [Abstract][Full Text] [Related]
10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
11. Phosphate functionalized and lactic acid containing graft copolymer: synthesis and evaluation as biomaterial for bone tissue engineering applications. Datta P; Chatterjee J; Dhara S J Biomater Sci Polym Ed; 2013; 24(6):696-713. PubMed ID: 23565910 [TBL] [Abstract][Full Text] [Related]
12. Electrospinning and evaluation of PHBV-based tissue engineering scaffolds with different fibre diameters, surface topography and compositions. Tong HW; Wang M; Lu WW J Biomater Sci Polym Ed; 2012; 23(6):779-806. PubMed ID: 21418747 [TBL] [Abstract][Full Text] [Related]
13. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Lu HH; Tang A; Oh SC; Spalazzi JP; Dionisio K Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111 [TBL] [Abstract][Full Text] [Related]
14. In vitro bioactivity of MOEP grafted ePTFE membranes for craniofacial applications. Suzuki S; Grøndahl L; Leavesley D; Wentrup-Byrne E Biomaterials; 2005 Sep; 26(26):5303-12. PubMed ID: 15814128 [TBL] [Abstract][Full Text] [Related]
15. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite. Bodhak S; Bose S; Bandyopadhyay A Acta Biomater; 2009 Jul; 5(6):2178-88. PubMed ID: 19303377 [TBL] [Abstract][Full Text] [Related]
16. Block copolymer of polyphosphoester and poly(L-lactic acid) modified surface for enhancing osteoblast adhesion, proliferation, and function. Yang XZ; Sun TM; Dou S; Wu J; Wang YC; Wang J Biomacromolecules; 2009 Aug; 10(8):2213-20. PubMed ID: 19586040 [TBL] [Abstract][Full Text] [Related]
17. Titanium dioxide (TiO(2)) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. Gerhardt LC; Jell GM; Boccaccini AR J Mater Sci Mater Med; 2007 Jul; 18(7):1287-98. PubMed ID: 17211724 [TBL] [Abstract][Full Text] [Related]
18. Accelerated bonelike apatite growth on porous polymer/ceramic composite scaffolds in vitro. Kim SS; Park MS; Gwak SJ; Choi CY; Kim BS Tissue Eng; 2006 Oct; 12(10):2997-3006. PubMed ID: 17506618 [TBL] [Abstract][Full Text] [Related]
20. Development of hybrid materials based on hydroxyethylmethacrylate as supports for improving cell adhesion and proliferation. Schiraldi C; D'Agostino A; Oliva A; Flamma F; De Rosa A; Apicella A; Aversa R; De Rosa M Biomaterials; 2004 Aug; 25(17):3645-53. PubMed ID: 15020139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]