These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 15754184)
21. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology. Cutright TJ; Meza L Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356 [TBL] [Abstract][Full Text] [Related]
22. Product and product-independent induction of butane oxidation in Pseudomonas butanovora. Sayavedra-Soto LA; Doughty DM; Kurth EG; Bottomley PJ; Arp DJ FEMS Microbiol Lett; 2005 Sep; 250(1):111-6. PubMed ID: 16055278 [TBL] [Abstract][Full Text] [Related]
23. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration. Jung IG; Park OH J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776 [TBL] [Abstract][Full Text] [Related]
24. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp. Kim S; Bae W; Hwang J; Park J Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323 [TBL] [Abstract][Full Text] [Related]
26. Molecular analysis of the soluble butane monooxygenase from 'Pseudomonas butanovora'. Sluis MK; Sayavedra-Soto LA; Arp DJ Microbiology (Reading); 2002 Nov; 148(Pt 11):3617-3629. PubMed ID: 12427952 [TBL] [Abstract][Full Text] [Related]
27. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Folsom BR; Chapman PJ; Pritchard PH Appl Environ Microbiol; 1990 May; 56(5):1279-85. PubMed ID: 2339883 [TBL] [Abstract][Full Text] [Related]
28. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262 [TBL] [Abstract][Full Text] [Related]
29. Metabolic pathway engineering to enhance aerobic degradation of chlorinated ethenes and to reduce their toxicity by cloning a novel glutathione S-transferase, an evolved toluene o-monooxygenase, and gamma-glutamylcysteine synthetase. Rui L; Kwon YM; Reardon KF; Wood TK Environ Microbiol; 2004 May; 6(5):491-500. PubMed ID: 15049922 [TBL] [Abstract][Full Text] [Related]
30. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Nelson MJ; Montgomery SO; Pritchard PH Appl Environ Microbiol; 1988 Feb; 54(2):604-6. PubMed ID: 3355147 [TBL] [Abstract][Full Text] [Related]
31. [The biodegradation of trichloroethylene by a methanotrophic bacterium]. Shen R; Li S Wei Sheng Wu Xue Bao; 1998 Feb; 38(1):63-9. PubMed ID: 12549391 [TBL] [Abstract][Full Text] [Related]
32. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance. Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443 [TBL] [Abstract][Full Text] [Related]
33. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1. Liu JB; Amemiya T; Chang Q; Xu X; Itoh K J Environ Sci Health B; 2011; 46(4):294-300. PubMed ID: 21500075 [TBL] [Abstract][Full Text] [Related]
34. Endophytic bacteria improve phytoremediation of Ni and TCE co-contamination. Weyens N; Croes S; Dupae J; Newman L; van der Lelie D; Carleer R; Vangronsveld J Environ Pollut; 2010 Jul; 158(7):2422-7. PubMed ID: 20462680 [TBL] [Abstract][Full Text] [Related]
35. Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively. Yee DC; Maynard JA; Wood TK Appl Environ Microbiol; 1998 Jan; 64(1):112-8. PubMed ID: 9435067 [TBL] [Abstract][Full Text] [Related]
37. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chen YM; Lin TF; Huang C; Lin JC Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301 [TBL] [Abstract][Full Text] [Related]
38. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444 [TBL] [Abstract][Full Text] [Related]
39. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate. Kang JW; Doty SL Can J Microbiol; 2014 Jul; 60(7):487-90. PubMed ID: 24992516 [TBL] [Abstract][Full Text] [Related]