These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 15754826)

  • 1. Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection.
    Perr JM; Furton KG; Almirall JR
    J Sep Sci; 2005 Feb; 28(2):177-83. PubMed ID: 15754826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the volatile chemical markers of explosives using novel solid phase microextraction coupled to ion mobility spectrometry.
    Guerra P; Lai H; Almirall JR
    J Sep Sci; 2008 Aug; 31(15):2891-8. PubMed ID: 18666175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of solid-phase microextraction to the recovery of organic explosives.
    Kirkbride KP; Klass G; Pigou PE
    J Forensic Sci; 1998 Jan; 43(1):76-81. PubMed ID: 9456529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry.
    Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X
    Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation of explosives in hair--part II: factors affecting sorption.
    Oxley JC; Smith JL; Kirschenbaum LJ; Marimganti S
    J Forensic Sci; 2007 Nov; 52(6):1291-6. PubMed ID: 18093063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stir-bar sorptive extraction and thermal desorption-ion mobility spectrometry for the determination of trinitrotoluene and l,3,5-trinitro-l,3,5-triazine in water samples.
    Lokhnauth JK; Snow NH
    J Chromatogr A; 2006 Feb; 1105(1-2):33-8. PubMed ID: 16249003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the headspace composition of smokeless powders using GC-MS, GC-μECD and ion mobility spectrometry.
    Joshi M; Rigsby K; Almirall JR
    Forensic Sci Int; 2011 May; 208(1-3):29-36. PubMed ID: 21109373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry.
    Lai H; Leung A; Magee M; Almirall JR
    Anal Bioanal Chem; 2010 Apr; 396(8):2997-3007. PubMed ID: 20229010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of explosives by positive corona discharge ion mobility spectrometry.
    Tabrizchi M; Ilbeigi V
    J Hazard Mater; 2010 Apr; 176(1-3):692-6. PubMed ID: 20004055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of explosives in hair.
    Oxley JC; Smith JL; Kirschenbaum LJ; Shinde KP; Marimganti S
    J Forensic Sci; 2005 Jul; 50(4):826-31. PubMed ID: 16078483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optofluidic ring resonator sensors for rapid DNT vapor detection.
    Sun Y; Liu J; Frye-Mason G; Ja SJ; Thompson AK; Fan X
    Analyst; 2009 Jul; 134(7):1386-91. PubMed ID: 19562206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of odor signatures of smokeless powders using solid phase microextraction coupled to an ion mobility spectrometer.
    Joshi M; Delgado Y; Guerra P; Lai H; Almirall JR
    Forensic Sci Int; 2009 Jul; 188(1-3):112-8. PubMed ID: 19410393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection.
    Tam M; Hill HH
    Anal Chem; 2004 May; 76(10):2741-7. PubMed ID: 15144183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of Mass Spectrometric Vapor Analysis To Improve Canine Explosive Detection Efficiency.
    Ong TH; Mendum T; Geurtsen G; Kelley J; Ostrinskaya A; Kunz R
    Anal Chem; 2017 Jun; 89(12):6482-6490. PubMed ID: 28598144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of explosives in vapor phase by field asymmetric ion mobility spectrometry with dopant-assisted laser ionization.
    Kostarev VA; Kotkovskii GE; Chistyakov AA; Akmalov AE
    Talanta; 2022 Aug; 245():123414. PubMed ID: 35487080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge.
    Na N; Zhang C; Zhao M; Zhang S; Yang C; Fang X; Zhang X
    J Mass Spectrom; 2007 Aug; 42(8):1079-85. PubMed ID: 17618527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry.
    Garcia-Reyes JF; Harper JD; Salazar GA; Charipar NA; Ouyang Z; Cooks RG
    Anal Chem; 2011 Feb; 83(3):1084-92. PubMed ID: 21174437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.