BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 1575512)

  • 1. Partitioning and membrane disordering effects of dopamine antagonists: influence of lipid peroxidation, temperature, and drug concentration.
    Palmeira CM; Oliveira CR
    Arch Biochem Biophys; 1992 May; 295(1):161-71. PubMed ID: 1575512
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Partition coefficients of dopamine antagonists in brain membranes and liposomes.
    Oliveira CR; Lima MC; Carvalho CA; Leysen JE; Carvalho AP
    Biochem Pharmacol; 1989 Jul; 38(13):2113-20. PubMed ID: 2735949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partition of dopamine antagonists into synthetic lipid bilayers: the effect of membrane structure and composition.
    Sarmento AB; de Lima MC; Oliveira CR
    J Pharm Pharmacol; 1993 Jul; 45(7):601-5. PubMed ID: 8105052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental changes in synaptic membrane fluidity: a comparison of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-[4-(trimethylamino)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH).
    Hitzemann RJ; Harris RA
    Brain Res; 1984 May; 316(1):113-20. PubMed ID: 6733531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane disordering by anesthetic drugs: relationship to synaptosomal sodium and calcium fluxes.
    Harris RA; Bruno P
    J Neurochem; 1985 Apr; 44(4):1274-81. PubMed ID: 2579208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amiodarone effects on membrane organization evaluated by fluorescence polarization.
    Antunes-Madeira MC; Videira RA; Klüppel ML; Madeira VV
    Int J Cardiol; 1995 Mar; 48(3):211-8. PubMed ID: 7782133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant effect of calcium antagonists on microsomal membranes isolated from different brain areas.
    Gonçalves T; Carvalho AP; Oliveira CR
    Eur J Pharmacol; 1991 Nov; 204(3):315-22. PubMed ID: 1773831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of a phosphatidylcholine derivative of diphenyl hexatriene (DPH-PC) in lymphocyte membranes. A comparison with DPH and the cationic derivative TMA-DPH using static and dynamic fluorescence.
    Ferretti G; Tangorra A; Zolese G; Curatola G
    Membr Biochem; 1993; 10(1):17-27. PubMed ID: 8510559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the cannabinoids on physical properties of brain membranes and phospholipid vesicles: fluorescence studies.
    Hillard CJ; Harris RA; Bloom AS
    J Pharmacol Exp Ther; 1985 Mar; 232(3):579-88. PubMed ID: 2983062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved polarized fluorescence studies of the temperature adaptation in Bacillus subtilis using DPH and TMA-DPH fluorescent probes.
    Herman P; Konopásek I; Plásek J; Svobodová J
    Biochim Biophys Acta; 1994 Feb; 1190(1):1-8. PubMed ID: 8110802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of non-electrolyte molecules with anesthetic activity on the physical properties of DMPC multilamellar liposomes.
    Hitzemann RJ
    Biochim Biophys Acta; 1989 Aug; 983(2):205-11. PubMed ID: 2758058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular order and fluidity of the plasma membrane of human platelets from time-resolved fluorescence depolarization.
    Mateo CR; Lillo MP; González-Rodríguez J; Acuña AU
    Eur Biophys J; 1991; 20(1):41-52. PubMed ID: 1935812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of the fluorescence properties of TMA-DPH as a probe for plasma membrane and for endocytic membrane.
    Illinger D; Duportail G; Mely Y; Poirel-Morales N; Gerard D; Kuhry JG
    Biochim Biophys Acta; 1995 Oct; 1239(1):58-66. PubMed ID: 7548145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of radiation induced lipid peroxidation on diphenylhexatriene fluorescence in egg phospholipid liposomal membrane.
    Pandey BN; Mishra KP
    J Biochem Mol Biol Biophys; 2002 Aug; 6(4):267-72. PubMed ID: 12186743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Location of ubiquinone homologues in liposome membranes studied by fluorescence anisotropy of diphenyl-hexatriene and trimethylammonium-diphenyl-hexatriene.
    Jemiola-Rzeminska M; Kruk J; Skowronek M; Strzalka K
    Chem Phys Lipids; 1996 Jan; 79(1):55-63. PubMed ID: 8907243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model.
    Rosa SM; Antunes-Madeira MC; Jurado AS; Madeira VV
    Appl Biochem Biotechnol; 2000 Jun; 87(3):165-75. PubMed ID: 10982227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane disordering effect of ethanol on cerebral microvessels of aged rats: a brief report.
    Mooradian AD; Smith TL
    Neurobiol Aging; 1993; 14(3):229-32. PubMed ID: 8321390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Destabilizing effects of fructose-1,6-bisphosphate on membrane bilayers.
    Ehringer WD; Su S; Chiangb B; Stillwell W; Chien S
    Lipids; 2002 Sep; 37(9):885-92. PubMed ID: 12458624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent lipid probes 12-AS and TMA-DPH report on selective, purinergically induced fluidity changes in plasma membranes of lymphoid cells.
    Matkó J; Nagy P
    J Photochem Photobiol B; 1997 Sep; 40(2):120-5. PubMed ID: 9345782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphatidic acid affects structural organization of phosphatidylcholine liposomes. A study of 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) fluorescence decay using distributional analysis.
    Zolese G; Gratton E; Curatola G
    Chem Phys Lipids; 1990 Jul; 55(1):29-39. PubMed ID: 2208443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.