BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 15755185)

  • 1. Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction.
    Badugu R; Lakowicz JR; Geddes CD
    J Am Chem Soc; 2005 Mar; 127(10):3635-41. PubMed ID: 15755185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitation and emission wavelength ratiometric cyanide-sensitive probes for physiological sensing.
    Badugu R; Lakowicz JR; Geddes CD
    Anal Biochem; 2004 Apr; 327(1):82-90. PubMed ID: 15033514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric probes based on anthraimidazolediones for selective sensing of fluoride and cyanide ion via intramolecular charge transfer.
    Kumari N; Jha S; Bhattacharya S
    J Org Chem; 2011 Oct; 76(20):8215-22. PubMed ID: 21892827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel reaction-based colorimetric and ratiometric fluorescent sensor for cyanide anion with a large emission shift and high selectivity.
    Wang S; Fei X; Guo J; Yang Q; Li Y; Song Y
    Talanta; 2016; 148():229-36. PubMed ID: 26653444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coumarin-indole based colorimetric and "turn on" fluorescent probe for cyanide.
    Xu Y; Dai X; Zhao BX
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():164-8. PubMed ID: 25490042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel fluorescent and chromogenic probe for cyanide detection in water based on the nucleophilic addition of cyanide to imine group.
    Sun Y; Liu Y; Chen M; Guo W
    Talanta; 2009 Dec; 80(2):996-1000. PubMed ID: 19836585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A NIR sensor for cyanide detection and its application in cell imaging.
    Wu WN; Wu H; Wang Y; Zhao XL; Xu ZQ; Xu ZH; Fan YC
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 199():141-145. PubMed ID: 29597069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-soluble AIE-active Fluorescent Organic Nanoparticles: Design, Preparation and Application for Specific Detection of Cyanide in Water and Food Samples.
    Hou M; Liu YC; Zhou W; Zhang JD; Yu FD; Zhang Y; Liu GJ; Xing GW
    Chem Asian J; 2021 Aug; 16(15):2014-2017. PubMed ID: 34128347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A colorimetric and ratiometric fluorescent probe for cyanide sensing in aqueous media and live cells.
    Hou L; Li F; Guo J; Zhang X; Kong X; Cui XT; Dong C; Wang Y; Shuang S
    J Mater Chem B; 2019 Jul; 7(30):4620-4629. PubMed ID: 31364679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel near-infrared ratiometric fluorescent probe for cyanide and its bioimaging applications.
    Kang J; Huo F; Zhang Y; Chao J; Glass TE; Yin C
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Feb; 209():95-99. PubMed ID: 30384021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence-based ratiometric sensors as emerging tools for CN
    Kumar A; Jeong E; Noh Y; Chae PS
    Methods; 2024 Feb; 222():57-80. PubMed ID: 38191006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanide and biothiols recognition properties of a coumarin chalcone compound as red fluorescent probe.
    Sun Y; Shan Y; Sun N; Li Z; Wu X; Guan R; Cao D; Zhao S; Zhao X
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():514-519. PubMed ID: 30064116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard.
    Badugu R; Lakowicz JR; Geddes CD
    Anal Chim Acta; 2004 Sep; 522(1):9-17. PubMed ID: 31896835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly selective and ratiometric fluorescent probe for cyanide by rationally altering the susceptible H-atom.
    Hao Y; Nguyen KH; Zhang Y; Zhang G; Fan S; Li F; Guo C; Lu Y; Song X; Qu P; Liu YN; Xu M
    Talanta; 2018 Jan; 176():234-241. PubMed ID: 28917746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rational design and application of a fluorogenic chemodosimeter for selective detection of cyanide in an aqueous solution via excimer formation.
    Kumar PS; Lakshmi PR; Elango KP
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117172. PubMed ID: 31174138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Colorimetric and Fluorescent Probe Based on Michael Acceptor Type Diketopyrrolopyrrole for Cyanide Detection.
    Wang L; Zhuo S; Cao D
    J Fluoresc; 2017 Sep; 27(5):1587-1594. PubMed ID: 28421322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design, synthesis of reaction-based dual-channel cyanide sensor in aqueous solution.
    Li JJ; Wei W; Qi XL; Xu X; Liu YC; Lin QH; Dong W
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():288-93. PubMed ID: 26231779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide.
    Orrego-Hernández J; Portilla J
    J Org Chem; 2017 Dec; 82(24):13376-13385. PubMed ID: 29171269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples.
    Lou X; Zhang Y; Qin J; Li Z
    Chemistry; 2011 Aug; 17(35):9691-6. PubMed ID: 21735497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient On-Off Ratiometric Fluorescence Probe for Cyanide Ion Based on Perturbation of the Interaction between Gold Nanoclusters and a Copper(II)-Phthalocyanine Complex.
    Shojaeifard Z; Hemmateenejad B; Shamsipur M
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15177-86. PubMed ID: 27211049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.