BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15755495)

  • 21. Visualization of Rab5 activity in living cells using FRET microscopy.
    Galperin E; Sorkin A
    Methods Enzymol; 2005; 403():119-34. PubMed ID: 16473582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor.
    Steinmeyer R; Harms GS
    Microsc Res Tech; 2009 Jan; 72(1):12-21. PubMed ID: 18785253
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo calcium imaging of brain activity in Drosophila by transgenic cameleon expression.
    Fiala A; Spall T
    Sci STKE; 2003 Mar; 2003(174):PL6. PubMed ID: 12644713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring protein interactions in the living cell through the fluorescence decays of the cyan fluorescent protein.
    Grailhe R; Merola F; Ridard J; Couvignou S; Le Poupon C; Changeux JP; Laguitton-Pasquier H
    Chemphyschem; 2006 Jul; 7(7):1442-54. PubMed ID: 16739159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A homogeneous fluorometric assay platform based on novel synthetic proteins.
    Vardar-Schara G; Krab IM; Yi G; Su WW
    Biochem Biophys Res Commun; 2007 Sep; 361(1):103-8. PubMed ID: 17659261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disentangling picosecond events that complicate the quantitative use of the calcium sensor YC3.60.
    Laptenok SP; van Stokkum IH; Borst JW; van Oort B; Visser AJ; van Amerongen H
    J Phys Chem B; 2012 Mar; 116(9):3013-20. PubMed ID: 22320307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and application of highly responsive fluorescence resonance energy transfer biosensors for detection of sugar in living Saccharomyces cerevisiae cells.
    Ha JS; Song JJ; Lee YM; Kim SJ; Sohn JH; Shin CS; Lee SG
    Appl Environ Microbiol; 2007 Nov; 73(22):7408-14. PubMed ID: 17890334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel, isotype-specific sensors for protein kinase A subunit interaction based on bioluminescence resonance energy transfer (BRET).
    Prinz A; Diskar M; Erlbruch A; Herberg FW
    Cell Signal; 2006 Oct; 18(10):1616-25. PubMed ID: 16524697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of intracellular IP3 during Ca2+ oscillations in mouse eggs with GFP-based FRET probe.
    Shirakawa H; Ito M; Sato M; Umezawa Y; Miyazaki S
    Biochem Biophys Res Commun; 2006 Jun; 345(2):781-8. PubMed ID: 16701560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GFP-based FRET analysis in live cells.
    Takanishi CL; Bykova EA; Cheng W; Zheng J
    Brain Res; 2006 May; 1091(1):132-9. PubMed ID: 16529720
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius.
    Kremers GJ; Goedhart J; van Munster EB; Gadella TW
    Biochemistry; 2006 May; 45(21):6570-80. PubMed ID: 16716067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measuring calcium signaling using genetically targetable fluorescent indicators.
    Palmer AE; Tsien RY
    Nat Protoc; 2006; 1(3):1057-65. PubMed ID: 17406387
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging FRET standards by steady-state fluorescence and lifetime methods.
    Domingo B; Sabariegos R; Picazo F; Llopis J
    Microsc Res Tech; 2007 Dec; 70(12):1010-21. PubMed ID: 17722057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dimerization of the cytokine receptors gp130 and LIFR analysed in single cells.
    Giese B; Roderburg C; Sommerauer M; Wortmann SB; Metz S; Heinrich PC; Müller-Newen G
    J Cell Sci; 2005 Nov; 118(Pt 21):5129-40. PubMed ID: 16254248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Novel lambda FRET spectral confocal microscopy imaging method.
    Megías D; Marrero R; Martínez Del Peso B; García MA; Bravo-Cordero JJ; García-Grande A; Santos A; Montoya MC
    Microsc Res Tech; 2009 Jan; 72(1):1-11. PubMed ID: 18785251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intracellular interaction between syntaxin and Munc 18-1 revealed by fluorescence resonance energy transfer.
    Yerrapureddy A; Korte T; Hollmann S; Nordhoff M; Ahnert-Hilger G; Herrmann A; Veit M
    Mol Membr Biol; 2005; 22(5):401-10. PubMed ID: 16308274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis of Toll-like receptor 4 and myeloid differentiation protein-2 interaction with fluorescence resonance energy transfer].
    Liu YW; Liu JH; Tang J; Zhao Q; Li JJ; Zhao MZ; Li ZJ; Wang GJ; Zhong TY; Deng P; Jiang Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2006 Aug; 26(8):1101-5. PubMed ID: 16939893
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of the spatiotemporal activation of rho GTPases using Raichu probes.
    Nakamura T; Kurokawa K; Kiyokawa E; Matsuda M
    Methods Enzymol; 2006; 406():315-32. PubMed ID: 16472667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluorescence-based sensing of glucose using engineered glucose/galactose-binding protein: a comparison of fluorescence resonance energy transfer and environmentally sensitive dye labelling strategies.
    Khan F; Gnudi L; Pickup JC
    Biochem Biophys Res Commun; 2008 Jan; 365(1):102-6. PubMed ID: 17976368
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.