These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1575556)

  • 1. An indirect calorimetry system for ventilator dependent very low birthweight infants.
    Forsyth JS; Crighton A
    Arch Dis Child; 1992 Mar; 67(3):315-9. PubMed ID: 1575556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants.
    Forsyth JS; Crighton A
    Arch Dis Child Fetal Neonatal Ed; 1995 Jul; 73(1):F4-7. PubMed ID: 7552595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technical and clinical testing of a computerized indirect calorimeter for use in mechanically ventilated neonates.
    Mayfield SR
    Am J Clin Nutr; 1991 Jul; 54(1):30-4. PubMed ID: 1905477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of a portable indirect calorimetry system for measurement of energy expenditure in sick preterm infants.
    Shortland GJ; Fleming PJ; Walter JH
    Arch Dis Child; 1992 Oct; 67(10 Spec No):1207-11. PubMed ID: 1444562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low birthweight infants and total parenteral nutrition immediately after birth. III. Randomised study of energy substrate utilisation, nitrogen balance, and carbon dioxide production.
    Forsyth JS; Murdock N; Crighton A
    Arch Dis Child Fetal Neonatal Ed; 1995 Jul; 73(1):F13-6. PubMed ID: 7552589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants.
    Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH
    JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of 24-hour energy expenditure from shorter measurement periods in premature infants.
    Bell EF; Rios GR; Wilmoth PK
    Pediatr Res; 1986 Jul; 20(7):646-9. PubMed ID: 3725462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of indirect calorimetry in monitoring feeding of low birth-weight preterm infants].
    Krämer T; Böhler T; Janecke AR; Hoffmann GF; Linderkamp O
    Klin Padiatr; 1999; 211(5):389-93. PubMed ID: 10572895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate, noninvasive quantitation of expiratory gas leak from uncuffed infant endotracheal tubes.
    Knauth A; Baumgart S
    Pediatr Pulmonol; 1990; 9(1):55-60. PubMed ID: 2117739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of energy substrates on respiratory gas exchange during conventional mechanical ventilation of preterm infants.
    Chessex P; Bélanger S; Piedboeuf B; Pineault M
    J Pediatr; 1995 Apr; 126(4):619-24. PubMed ID: 7699545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analysis of the variability in estimates of bioenergetic variables in preterm infants.
    Schulze K; Stefanski M; Masterson J; Kashyap S; Sanocka U; Forsyth M; Ramakrishnan R; Dell R
    Pediatr Res; 1986 May; 20(5):422-7. PubMed ID: 3086827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of carbon dioxide production rate in sick ventilated premature infants.
    Lucas A; Nohria V; Roberts SB
    Biol Neonate; 1987; 51(3):138-43. PubMed ID: 3105609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Technical and methodologic considerations for performance of indirect calorimetry in ventilated and nonventilated preterm infants.
    Thureen PJ; Phillips RE; DeMarie MP; Hoffenberg A; Bronstein MN; Spedale SB; Hay WW
    Crit Care Med; 1997 Jan; 25(1):171-80. PubMed ID: 8989195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Day-to-day energy expenditure variability in low birth weight neonates.
    Marks KH; Nardis EE; Derr JA
    Pediatr Res; 1987 Jan; 21(1):66-71. PubMed ID: 3099256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulmonary oxygen consumption: a hypothesis to explain the increase in oxygen consumption of low birth weight infants with lung disease.
    Schulze A; Abubakar K; Gill G; Way RC; Sinclair JC
    Intensive Care Med; 2001 Oct; 27(10):1636-42. PubMed ID: 11685305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of intravenous glucose loading on oxygen consumption, carbon dioxide production, and resting energy expenditure in infants with bronchopulmonary dysplasia.
    Yunis KA; Oh W
    J Pediatr; 1989 Jul; 115(1):127-32. PubMed ID: 2500510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of energy expenditure in ventilated preterm infants.
    DeMarie MP; Hoffenberg A; Biggerstaff SL; Jeffers BW; Hay WW; Thureen PJ
    J Perinat Med; 1999; 27(6):465-72. PubMed ID: 10732305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro validation and clinical testing of an indirect calorimetry system for ventilated preterm infants that is unaffected by endotracheal tube leaks and can be used during nasal continuous positive airway pressure.
    Bauer K; Ketteler J; Laurenz M; Versmold H
    Pediatr Res; 2001 Mar; 49(3):394-401. PubMed ID: 11228266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic measurements during mechanical ventilation in the pediatric intensive care unit.
    Witte MK
    Respir Care Clin N Am; 1996 Dec; 2(4):573-86. PubMed ID: 9390897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An indirect calorimetry system for ventilator dependent very low birthweight infants.
    Matthews DS; Matthews JN
    Arch Dis Child; 1992 Nov; 67(11):1411. PubMed ID: 1471901
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.