BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 1575557)

  • 1. Positive end expiratory pressure in acute and chronic respiratory distress.
    Greenough A; Chan V; Hird MF
    Arch Dis Child; 1992 Mar; 67(3):320-3. PubMed ID: 1575557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral haemodynamic effects of changes in positive end expiratory pressure in preterm infants.
    Shortland DB; Field D; Archer LN; Gibson NA; Woods KL; Evans DH; Levene MI
    Arch Dis Child; 1989 Apr; 64(4 Spec No):465-9. PubMed ID: 2499269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamic pressure-volume curve predicts the optimal positive end-expiratory pressure in patients with acute respiratory distress syndrome].
    Qiu H; Zhou S; Guo F
    Zhonghua Nei Ke Za Zhi; 2001 Sep; 40(9):621-4. PubMed ID: 11758245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of positive end expiratory pressure on functional residual capacity and compliance in surfactant-treated preterm infants.
    Dinger J; Töpfer A; Schaller P; Schwarze R
    J Perinat Med; 2001; 29(2):137-43. PubMed ID: 11344672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-frequency pressure-control ventilation with high positive end-expiratory pressure in children with acute respiratory distress syndrome.
    Paulson TE; Spear RM; Silva PD; Peterson BM
    J Pediatr; 1996 Oct; 129(4):566-73. PubMed ID: 8859264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compliance of the respiratory system as a predictor for successful extubation in very-low-birth-weight infants recovering from respiratory distress syndrome.
    Smith J; Pieper CH; Maree D; Gie RP
    S Afr Med J; 1999 Oct; 89(10):1097-102. PubMed ID: 10582068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Assessment of pulmonary function of preterm newborn infants with respiratory distress syndrome at different positive end expiratory pressure levels].
    Consolo LC; Palhares DB; Consolo LZ
    J Pediatr (Rio J); 2002; 78(5):403-8. PubMed ID: 14647747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effects of positive end-expiratory pressure on lung recruited volume and oxygenation in patients with acute respiratory distress syndrome].
    Qiu HB; Xu HY; Yang Y; Zhou SX; Chen YM; Sun HM
    Zhongguo Wei Zhong Bing Ji Jiu Yi Xue; 2004 Jul; 16(7):399-402. PubMed ID: 15238174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of positive end-expiratory pressure on respiratory compliance in children with acute respiratory failure.
    Sivan Y; Deakers TW; Newth CJ
    Pediatr Pulmonol; 1991; 11(2):103-7. PubMed ID: 1758726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of cardiopulmonary function in ventilated neonates with respiratory distress syndrome using rebreathing methodology.
    Bose CL; Lawson EE; Greene A; Mentz W; Friedman M
    Pediatr Res; 1986 Apr; 20(4):316-20. PubMed ID: 3517798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Titrating positive end-expiratory pressure after recruitment maneuver according to end-tidal carbon dioxide and its related indicators in acute respiratory distress syndrome dog model].
    Liu Y; Liu DW; Long Y; Xie ZY
    Zhonghua Nei Ke Za Zhi; 2012 Aug; 51(8):604-8. PubMed ID: 23158857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of mode, inspiratory time, and positive end-expiratory pressure on partial liquid ventilation.
    Fujino Y; Kirmse M; Hess D; Kacmarek RM
    Am J Respir Crit Care Med; 1999 Apr; 159(4 Pt 1):1087-95. PubMed ID: 10194150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive end expiratory pressure: effects on lung mechanics of premature lambs.
    Shaffer TH; Koen PA; Moskowitz GD; Ferguson JD; Delivoria-Papadopoulos M
    Biol Neonate; 1978; 34(1-2):1-10. PubMed ID: 359057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of oxygen transport in mechanically ventilated newborns using oximetry and pulsed Doppler-derived cardiac output.
    Trang TT; Tibballs J; Mercier JC; Beaufils F
    Crit Care Med; 1988 Nov; 16(11):1094-7. PubMed ID: 3048899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feasibility of Mid-Frequency Ventilation Among Infants With Respiratory Distress Syndrome.
    Bhat R; Kelleher J; Ambalavanan N; Chatburn RL; Mireles-Cabodevila E; Carlo WA
    Respir Care; 2017 Apr; 62(4):481-488. PubMed ID: 28049742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circulatory depression with high peep in the surfactant-deficient rabbit.
    Chakrabarti MK; Holdcroft A; Sapsed-Byrne S; Whitwam JG
    Br J Anaesth; 1989 Dec; 63(6):732-5. PubMed ID: 2514779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity of cerebral vasoreactivity in preterm infants supported by mechanical ventilation.
    Pryds O; Greisen G; Lou H; Friis-Hansen B
    J Pediatr; 1989 Oct; 115(4):638-45. PubMed ID: 2507767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of positive end expiratory pressure during ventilation of the preterm infant.
    Field D; Milner AD; Hopkin IE
    Arch Dis Child; 1985 Sep; 60(9):843-7. PubMed ID: 3931563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas exchange and lung mechanics in patients with acute respiratory distress syndrome: comparison of three different strategies of positive end expiratory pressure selection.
    Valentini R; Aquino-Esperanza J; Bonelli I; Maskin P; Setten M; Danze F; Attie S; Rodriguez PO
    J Crit Care; 2015 Apr; 30(2):334-40. PubMed ID: 25577132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A rat model of acute respiratory distress syndrome (ARDS): Part 1. Time dependency of histological and pathological changes.
    Germann PG; Häfner D
    J Pharmacol Toxicol Methods; 1998 Aug; 40(2):101-7. PubMed ID: 10100499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.