These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15755726)

  • 1. Structure and kinetics of a monomeric glucosamine 6-phosphate deaminase: missing link of the NagB superfamily?
    Vincent F; Davies GJ; Brannigan JA
    J Biol Chem; 2005 May; 280(20):19649-55. PubMed ID: 15755726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ring-opening mechanism revealed by crystal structures of NagB and its ES intermediate complex.
    Liu C; Li D; Liang YH; Li LF; Su XD
    J Mol Biol; 2008 May; 379(1):73-81. PubMed ID: 18436239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Nitrogen Regulatory PII Protein (GlnB) and
    Rodionova IA; Goodacre N; Babu M; Emili A; Uetz P; Saier MH
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29229699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why does Escherichia coli grow more slowly on glucosamine than on N-acetylglucosamine? Effects of enzyme levels and allosteric activation of GlcN6P deaminase (NagB) on growth rates.
    Alvarez-Añorve LI; Calcagno ML; Plumbridge J
    J Bacteriol; 2005 May; 187(9):2974-82. PubMed ID: 15838023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) In Vivo Justified by Intracellular Amino Sugar Metabolite Concentrations.
    Álvarez-Añorve LI; Gaugué I; Link H; Marcos-Viquez J; Díaz-Jiménez DM; Zonszein S; Bustos-Jaimes I; Schmitz-Afonso I; Calcagno ML; Plumbridge J
    J Bacteriol; 2016 Jun; 198(11):1610-1620. PubMed ID: 27002132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allosteric regulation of glucosamine-6-phosphate deaminase (NagB) and growth of Escherichia coli on glucosamine.
    Alvarez-Añorve LI; Bustos-Jaimes I; Calcagno ML; Plumbridge J
    J Bacteriol; 2009 Oct; 191(20):6401-7. PubMed ID: 19700525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the multiple functional roles of the active site histidine in catalysis and allosteric regulation of Escherichia coli glucosamine 6-phosphate deaminase.
    Montero-Morán GM; Lara-González S; Alvarez-Añorve LI; Plumbridge JA; Calcagno ML
    Biochemistry; 2001 Aug; 40(34):10187-96. PubMed ID: 11513596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of quaternary structure of glucosamine-6-phosphate deaminase from Giardia lamblia.
    Kwiatkowska-Semrau K; Czarnecka J; Wojciechowski M; Milewski S
    Parasitol Res; 2015 Jan; 114(1):175-84. PubMed ID: 25326378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two mammalian glucosamine-6-phosphate deaminases: a structural and genetic study.
    Arreola R; Valderrama B; Morante ML; Horjales E
    FEBS Lett; 2003 Sep; 551(1-3):63-70. PubMed ID: 12965206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the functional role of Arg172 in substrate binding and allosteric transition in Escherichia coli glucosamine-6-phosphate deaminase.
    Lucumí-Moreno A; Calcagno ML
    Arch Biochem Biophys; 2005 Oct; 442(1):41-8. PubMed ID: 16168949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequences of the Escherichia coli nagE and nagB genes: the structural genes for the N-acetylglucosamine transport protein of the bacterial phosphoenolpyruvate: sugar phosphotransferase system and for glucosamine-6-phosphate deaminase.
    Rogers MJ; Ohgi T; Plumbridge J; Söll D
    Gene; 1988; 62(2):197-207. PubMed ID: 3284790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Allosteric kinetics of the isoform 1 of human glucosamine-6-phosphate deaminase.
    Alvarez-Añorve LI; Alonzo DA; Mora-Lugo R; Lara-González S; Bustos-Jaimes I; Plumbridge J; Calcagno ML
    Biochim Biophys Acta; 2011 Dec; 1814(12):1846-53. PubMed ID: 21807125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The allosteric transition of glucosamine-6-phosphate deaminase: the structure of the T state at 2.3 A resolution.
    Horjales E; Altamirano MM; Calcagno ML; Garratt RC; Oliva G
    Structure; 1999 May; 7(5):527-37. PubMed ID: 10378272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of the conformational flexibility of the active-site lid on the allosteric kinetics of glucosamine-6-phosphate deaminase.
    Bustos-Jaimes I; Sosa-Peinado A; Rudiño-Piñera E; Horjales E; Calcagno ML
    J Mol Biol; 2002 May; 319(1):183-9. PubMed ID: 12051945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucosamine-6-phosphate deaminase from beef kidney is an allosteric system of the V-type.
    Lara-Lemus R; Calcagno ML
    Biochim Biophys Acta; 1998 Oct; 1388(1):1-9. PubMed ID: 9774701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tertiary origin of the allosteric activation of E. coli glucosamine-6-phosphate deaminase studied by sol-gel nanoencapsulation of its T conformer.
    Zonszein S; Álvarez-Añorve LI; Vázquez-Núñez RJ; Calcagno ML
    PLoS One; 2014; 9(5):e96536. PubMed ID: 24787711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dimer between monomers and hexamers-Oligomeric variations in glucosamine-6-phosphate deaminase family.
    Srinivasachari S; Tiwari VR; Kharbanda T; Sowdamini R; Subramanian R
    PLoS One; 2023; 18(1):e0271654. PubMed ID: 36598911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional and solution structure studies of amino sugar deacetylase and deaminase enzymes from Staphylococcus aureus.
    Davies JS; Coombes D; Horne CR; Pearce FG; Friemann R; North RA; Dobson RCJ
    FEBS Lett; 2019 Jan; 593(1):52-66. PubMed ID: 30411345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of the roles of agaA, agaI, and agaS genes in the N-acetyl-D-galactosamine and D-galactosamine catabolic pathways in Escherichia coli strains O157:H7 and C.
    Hu Z; Patel IR; Mukherjee A
    BMC Microbiol; 2013 May; 13():94. PubMed ID: 23634833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.