These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 15755890)
21. Sensory cues for sound localization in the cricket Teleogryllus oceanicus: interaural difference in response strength versus interaural latency difference. Pollack GS J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):143-51. PubMed ID: 12607043 [TBL] [Abstract][Full Text] [Related]
22. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. Samson AH; Pollack GS J Neurophysiol; 2002 Nov; 88(5):2322-8. PubMed ID: 12424273 [TBL] [Abstract][Full Text] [Related]
23. Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. Poulet JF; Hedwig B J Exp Biol; 2001 Apr; 204(Pt 7):1281-93. PubMed ID: 11249838 [TBL] [Abstract][Full Text] [Related]
24. Novel schemes for hearing and orientation in insects. Robert D; Göpfert MC Curr Opin Neurobiol; 2002 Dec; 12(6):715-20. PubMed ID: 12490264 [TBL] [Abstract][Full Text] [Related]
25. Walking in Fourier's space: algorithms for the computation of periodicities in song patterns by the cricket Gryllus bimaculatus. Hennig RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Oct; 195(10):971-87. PubMed ID: 19756649 [TBL] [Abstract][Full Text] [Related]
26. Out of phase: relevance of the medial septum for directional hearing and phonotaxis in the natural habitat of field crickets. Hirtenlehner S; Römer H; Schmidt AK J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Feb; 200(2):139-48. PubMed ID: 24281354 [TBL] [Abstract][Full Text] [Related]
27. Directional hearing in a silicon cricket. Reeve R; van Schaik A; Jin C; Hamilton T; Torben-Nielsen B; Webb B Biosystems; 2007 Feb; 87(2-3):307-13. PubMed ID: 17034935 [TBL] [Abstract][Full Text] [Related]
28. Temporal resolution for calling song signals by female crickets, Gryllus bimaculatus. Schneider E; Hennig RM J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Mar; 198(3):181-91. PubMed ID: 22086085 [TBL] [Abstract][Full Text] [Related]
29. Phonotactic walking paths of field crickets in closed-loop conditions and their simulation using a stochastic model. Mhatre N; Balakrishnan R J Exp Biol; 2007 Oct; 210(Pt 20):3661-76. PubMed ID: 17921167 [TBL] [Abstract][Full Text] [Related]
30. Prolonged response to calling songs by the L3 auditory interneuron in female crickets (Acheta domesticus): possible roles in regulating phonotactic threshold and selectiveness for call carrier frequency. Bronsert M; Bingol H; Atkins G; Stout J J Exp Zool A Comp Exp Biol; 2003 Mar; 296(1):72-85. PubMed ID: 12589693 [TBL] [Abstract][Full Text] [Related]
31. Phonotactic response of female crickets on the Kramer treadmill: methodology, sensory and behavioural implications. Verburgt L; Ferguson JW; Weber T J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Jan; 194(1):79-96. PubMed ID: 18049821 [TBL] [Abstract][Full Text] [Related]
32. Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. Zorović M; Hedwig B J Neurophysiol; 2011 May; 105(5):2181-94. PubMed ID: 21346206 [TBL] [Abstract][Full Text] [Related]
33. Experience-dependent modification of ultrasound auditory processing in a cricket escape response. Engel JE; Hoy RR J Exp Biol; 1999 Oct; 202(Pt 20):2797-806. PubMed ID: 10504315 [TBL] [Abstract][Full Text] [Related]
34. Does the choosiness of female crickets change as they age? Sarmiento-Ponce EJ; Rogers S; Hedwig B J Exp Biol; 2021 Jun; 224(11):. PubMed ID: 34114627 [TBL] [Abstract][Full Text] [Related]
35. A corollary discharge mechanism modulates central auditory processing in singing crickets. Poulet JF; Hedwig B J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626 [TBL] [Abstract][Full Text] [Related]
36. Physical and temporal scaling considerations in a robot model of cricket calling song preference. Lund HH; Webb B; Hallam J Artif Life; 1998; 4(1):95-107. PubMed ID: 9798277 [TBL] [Abstract][Full Text] [Related]
37. Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus. Fukutomi M; Someya M; Ogawa H J Exp Biol; 2015 Dec; 218(Pt 24):3968-77. PubMed ID: 26519512 [TBL] [Abstract][Full Text] [Related]
38. Temporal and directional processing by an identified interneuron, ON1, compared in cricket species that sing with different tempos. Tunstall DN; Pollack GS J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Apr; 191(4):363-72. PubMed ID: 15668779 [TBL] [Abstract][Full Text] [Related]
39. Coupling of visual to auditory cues during phonotactic approach in the phaneropterine bushcricket Poecilimon affinis. von Helversen D; Wendler G J Comp Physiol A; 2000; 186(7-8):729-36. PubMed ID: 11016788 [TBL] [Abstract][Full Text] [Related]
40. Rearing under different conditions results in different functional recoveries of giant interneurons in unilaterally cercus-ablated crickets, Gryllus bimaculatus. Kanou M; Kuroishi H; Takuwa H Zoolog Sci; 2008 Jun; 25(6):653-61. PubMed ID: 18624575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]