These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 15756582)

  • 1. Spatial variability of leaf wetness duration in different crop canopies.
    Sentelhas PC; Gillespie TJ; Batzer JC; Gleason ML; Monteiro JE; Pezzopane JR; Pedro MJ
    Int J Biometeorol; 2005 Jul; 49(6):363-70. PubMed ID: 15756582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf wetness duration measurement: comparison of cylindrical and flat plate sensors under different field conditions.
    Sentelhas PC; Gillespie TJ; Santos EA
    Int J Biometeorol; 2007 Mar; 51(4):265-73. PubMed ID: 17124590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial Heterogeneity of Leaf Wetness Duration in Apple Trees and Its Influence on Performance of a Warning System for Sooty Blotch and Flyspeck.
    Batzer JC; Gleason ML; Taylor SE; Koehler KJ; Monteiro JEBA
    Plant Dis; 2008 Jan; 92(1):164-170. PubMed ID: 30786361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic leaf wetness duration sensor: why it should be painted.
    Sentelhas PC; Monteiro JE; Gillespie TJ
    Int J Biometeorol; 2004 May; 48(4):202-5. PubMed ID: 14750003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of leaf wetness duration models for operational use in strawberry disease-warning systems in four US states.
    Montone VO; Fraisse CW; Peres NA; Sentelhas PC; Gleason M; Ellis M; Schnabel G
    Int J Biometeorol; 2016 Nov; 60(11):1761-1774. PubMed ID: 27180263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Coating, Deployment Angle, and Compass Orientation on Performance of Electronic Wetness Sensors During Dew Periods.
    Lau YF; Gleason ML; Zriba N; Taylor SE; Hinz PN
    Plant Dis; 2000 Feb; 84(2):192-197. PubMed ID: 30841314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.
    Möller M; Alchanatis V; Cohen Y; Meron M; Tsipris J; Naor A; Ostrovsky V; Sprintsin M; Cohen S
    J Exp Bot; 2007; 58(4):827-38. PubMed ID: 16968884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of an Empirical Model to Estimate Leaf Wetness Duration for Operation of a Disease Warning System Under a Shade in a Ginseng Field.
    Lee KJ; Kang JY; Lee DY; Jang SW; Lee S; Lee BW; Kim KS
    Plant Dis; 2016 Jan; 100(1):25-31. PubMed ID: 30688562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches for the Prediction of Leaf Wetness Duration with Machine Learning.
    Solís M; Rojas-Herrera V
    Biomimetics (Basel); 2021 May; 6(2):. PubMed ID: 34069181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of an ultrasonic ranging sensor in apple tree canopies.
    Escolà A; Planas S; Rosell JR; Pomar J; Camp F; Solanelles F; Gracia F; Llorens J; Gil E
    Sensors (Basel); 2011; 11(3):2459-77. PubMed ID: 22163749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects.
    Pincebourde S; Sinoquet H; Combes D; Casas J
    J Anim Ecol; 2007 May; 76(3):424-38. PubMed ID: 17439460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Canopy Wetness and Humidity Prediction Using Satellite and Synoptic-Scale Meteorological Observations.
    Anderson MC; Bland WL; Norman JM; Diak GD
    Plant Dis; 2001 Sep; 85(9):1018-1026. PubMed ID: 30823085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model to Enhance Site-Specific Estimation of Leaf Wetness Duration.
    Kim KS; Taylor SE; Gleason ML; Koehler KJ
    Plant Dis; 2002 Feb; 86(2):179-185. PubMed ID: 30823317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring the vertical profile of leaf wetness in a forest canopy.
    Oliver B; Hannah C; Ingrid C; Antonio Lola DC; Patrick M
    MethodsX; 2021; 8():101332. PubMed ID: 34434842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of microclimate conditions under artificial shades in a ginseng field.
    Lee KJ; Lee BW; Kang JY; Lee DY; Jang SW; Kim KS
    J Ginseng Res; 2016 Jan; 40(1):90-6. PubMed ID: 26843827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated CO2 effects on canopy and soil water flux parameters measured using a large chamber in crops grown with free-air CO2 enrichment.
    Burkart S; Manderscheid R; Wittich KP; Löpmeier FJ; Weigel HJ
    Plant Biol (Stuttg); 2011 Mar; 13(2):258-69. PubMed ID: 21309972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon dioxide effects on stomatal responses to the environment and water use by crops under field conditions.
    Bunce JA
    Oecologia; 2004 Jun; 140(1):1-10. PubMed ID: 14557864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring thermal imaging variables for the detection of stress responses in grapevine under different irrigation regimes.
    Grant OM; Tronina L; Jones HG; Chaves MM
    J Exp Bot; 2007; 58(4):815-25. PubMed ID: 17032729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light drives vertical gradients of leaf morphology in a sugar maple (Acer saccharum) forest.
    Coble AP; Cavaleri MA
    Tree Physiol; 2014 Feb; 34(2):146-58. PubMed ID: 24531298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of Leaf Wetness Duration and Temperature on Infection of Grape Leaves by
    Carisse O; Levasseur A; Provost C
    Plant Dis; 2020 Nov; 104(11):2817-2822. PubMed ID: 32986537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.