BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15756588)

  • 1. Computing numerically the access resistance of a pore.
    Aguilella-Arzo M; Aguilella VM; Eisenberg RS
    Eur Biophys J; 2005 Jun; 34(4):314-22. PubMed ID: 15756588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Access resistance in protein nanopores. A structure-based computational approach.
    Aguilella-Arzo M; Aguilella VM
    Bioelectrochemistry; 2020 Feb; 131():107371. PubMed ID: 31513986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Access resistance of a single conducting membrane channel.
    Levadny V; Aguilella VM; Belaya M
    Biochim Biophys Acta; 1998 Jan; 1368(2):338-42. PubMed ID: 9459610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
    Cárdenas AE; Coalson RD; Kurnikova MG
    Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved 3D continuum calculations of ion flux through membrane channels.
    Koumanov A; Zachariae U; Engelhardt H; Karshikoff A
    Eur Biophys J; 2003 Dec; 32(8):689-702. PubMed ID: 12879311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.
    Bolintineanu DS; Sayyed-Ahmad A; Davis HT; Kaznessis YN
    PLoS Comput Biol; 2009 Jan; 5(1):e1000277. PubMed ID: 19180178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poisson-Boltzmann-Nernst-Planck model.
    Zheng Q; Wei GW
    J Chem Phys; 2011 May; 134(19):194101. PubMed ID: 21599038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels.
    Nonner W; Eisenberg B
    Biophys J; 1998 Sep; 75(3):1287-305. PubMed ID: 9726931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of extracellular conductivity on electroporation-mediated molecular delivery.
    Li J; Tan W; Yu M; Lin H
    Biochim Biophys Acta; 2013 Feb; 1828(2):461-70. PubMed ID: 22954677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
    Chen D
    Bull Math Biol; 2016 Aug; 78(8):1703-26. PubMed ID: 27480225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel.
    Kurnikova MG; Coalson RD; Graf P; Nitzan A
    Biophys J; 1999 Feb; 76(2):642-56. PubMed ID: 9929470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels.
    Liu JL; Eisenberg B
    J Chem Phys; 2014 Dec; 141(22):22D532. PubMed ID: 25494803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K; Elber R
    Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical descriptions of experimental selectivity measurements in ion channels.
    Gillespie D; Eisenberg RS
    Eur Biophys J; 2002 Oct; 31(6):454-66. PubMed ID: 12355255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-consistent analytic solution for the current and the access resistance in open ion channels.
    Luchinsky DG; Tindjong R; Kaufman I; McClintock PV; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021925. PubMed ID: 19792169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified Donnan potentials for ion transport through biological ion channels.
    Gillespie D; Eisenberg RS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jun; 63(6 Pt 1):061902. PubMed ID: 11415140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate, water and ion transport through a charged nanosize pore.
    De Luca G; Glavinović MI
    Biochim Biophys Acta; 2007 Feb; 1768(2):264-79. PubMed ID: 17014822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic nanopores with fixed charges: an electrodiffusion model for ionic transport.
    Ramírez P; Mafé S; Aguilella VM; Alcaraz A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 1):011910. PubMed ID: 12935179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exact continuum solution for a channel that can be occupied by two ions.
    Levitt DG
    Biophys J; 1987 Sep; 52(3):455-66. PubMed ID: 2443193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.