These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 15756588)

  • 41. Solution of the Poisson-Nernst-Planck equations in the cell-substrate interface.
    Pabst M; Wrobel G; Ingebrandt S; Sommerhage F; Offenhäusser A
    Eur Phys J E Soft Matter; 2007 Sep; 24(1):1-8. PubMed ID: 17728981
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A fast in silico simulation of ion flux through the large-pore channel proteins.
    Bransburg-Zabary S; Nachliel E; Gutman M
    Biophys J; 2002 Dec; 83(6):3001-11. PubMed ID: 12496073
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Constant fields and constant gradients in open ionic channels.
    Chen DP; Barcilon V; Eisenberg RS
    Biophys J; 1992 May; 61(5):1372-93. PubMed ID: 1376159
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrodiffusion kinetics of ionic transport in a simple membrane channel.
    Valent I; Petrovič P; Neogrády P; Schreiber I; Marek M
    J Phys Chem B; 2013 Nov; 117(46):14283-93. PubMed ID: 24164274
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hierarchical approach to predicting permeation in ion channels.
    Mashl RJ; Tang Y; Schnitzer J; Jakobsson E
    Biophys J; 2001 Nov; 81(5):2473-83. PubMed ID: 11606263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An energy-efficient gating mechanism in the acetylcholine receptor channel suggested by molecular and Brownian dynamics.
    Corry B
    Biophys J; 2006 Feb; 90(3):799-810. PubMed ID: 16284265
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of ionic currents across a model membrane channel using Brownian dynamics.
    Chung SH; Hoyles M; Allen T; Kuyucak S
    Biophys J; 1998 Aug; 75(2):793-809. PubMed ID: 9675181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids.
    Eisenberg B; Hyon Y; Liu C
    J Chem Phys; 2010 Sep; 133(10):104104. PubMed ID: 20849161
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamic properties of Na+ ions in models of ion channels: a molecular dynamics study.
    Smith GR; Sansom MS
    Biophys J; 1998 Dec; 75(6):2767-82. PubMed ID: 9826599
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calculation of iron transport through human H-chain ferritin.
    Laghaei R; Kowallis W; Evans DG; Coalson RD
    J Phys Chem A; 2014 Sep; 118(35):7442-53. PubMed ID: 24527783
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Kinetic theory model for ion movement through biological membranes. 3. Steady-state electrical properties with solution asymmetry.
    Mackey MC; McNeel ML
    Biophys J; 1971 Aug; 11(8):664-74. PubMed ID: 5116582
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimization of 3D Poisson-Nernst-Planck model for fast evaluation of diverse protein channels.
    Dyrka W; Bartuzel MM; Kotulska M
    Proteins; 2013 Oct; 81(10):1802-22. PubMed ID: 23720356
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Extrusion of transmitter, water and ions generates forces to close fusion pore.
    Tajparast M; Glavinović MI
    Biochim Biophys Acta; 2009 May; 1788(5):993-1008. PubMed ID: 19366586
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electroneutral models for dynamic Poisson-Nernst-Planck systems.
    Song Z; Cao X; Huang H
    Phys Rev E; 2018 Jan; 97(1-1):012411. PubMed ID: 29448453
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Strong electrolyte continuum theory solution for equilibrium profiles, diffusion limitation, and conductance in charged ion channels.
    Levitt DG
    Biophys J; 1985 Jul; 48(1):19-31. PubMed ID: 2410048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Exploration of the structural features defining the conduction properties of a synthetic ion channel.
    Dieckmann GR; Lear JD; Zhong Q; Klein ML; DeGrado WF; Sharp KA
    Biophys J; 1999 Feb; 76(2):618-30. PubMed ID: 9929468
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.
    Im W; Roux B
    J Mol Biol; 2002 Jun; 319(5):1177-97. PubMed ID: 12079356
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation.
    Boschitsch AH; Fenley MO
    J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Numerical methods for a Poisson-Nernst-Planck-Fermi model of biological ion channels.
    Liu JL; Eisenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012711. PubMed ID: 26274207
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus brownian dynamics.
    Corry B; Kuyucak S; Chung SH
    Biophys J; 2000 May; 78(5):2364-81. PubMed ID: 10777733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.