These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 15756966)

  • 21. [Distribution and diversity of sulfate-reducing bacteria in a crude oil gathering and transferring system].
    Luo L; Liu YJ; Wang XC
    Huan Jing Ke Xue; 2010 Sep; 31(9):2160-5. PubMed ID: 21072940
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial variability of sulfate reduction in a shallow aquifer.
    Musslewhite CL; Swift D; Gilpen J; McInerney MJ
    Environ Microbiol; 2007 Nov; 9(11):2810-9. PubMed ID: 17922764
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.
    Utgikar VP; Tabak HH; Haines JR; Govind R
    Biotechnol Bioeng; 2003 May; 82(3):306-12. PubMed ID: 12599257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB).
    Pérez-Jiménez JR; Kerkhof LJ
    Appl Environ Microbiol; 2005 Feb; 71(2):1004-11. PubMed ID: 15691959
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biotransformation of phosphogypsum by bacteria isolated from petroleum-refining wastewaters.
    Wolicka D; Kowalski W; Boszczyk-Maleszak H
    Pol J Microbiol; 2005; 54(2):169-73. PubMed ID: 16209111
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Adsorption Mechanisms of Ciprofloxacin by Extracellular Polymeric Substances of Sulfate-reducing Bacteria Sludge].
    Zhang HQ; Jia YY; Fang HT; Yin LW; Lü H
    Huan Jing Ke Xue; 2018 Oct; 39(10):4653-4660. PubMed ID: 30229614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation potential and growth of anaerobic bacteria in produced water.
    Vieira DS; Sérvulo EF; Cammarota MC
    Environ Technol; 2005 Aug; 26(8):915-22. PubMed ID: 16128390
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments.
    Shao D; Kang Y; Wu S; Wong MH
    Sci Total Environ; 2012 May; 424():331-6. PubMed ID: 22444059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination.
    Martins M; Faleiro ML; Barros RJ; Veríssimo AR; Barreiros MA; Costa MC
    J Hazard Mater; 2009 Jul; 166(2-3):706-13. PubMed ID: 19135795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria.
    Barton LL; Fauque GD
    Adv Appl Microbiol; 2009; 68():41-98. PubMed ID: 19426853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria.
    Lyimo TJ; Pol A; Harhangi HR; Jetten MS; Op den Camp HJ
    FEMS Microbiol Ecol; 2009 Dec; 70(3):483-92. PubMed ID: 19744237
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea.
    Matsui GY; Ringelberg DB; Lovell CR
    Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.
    Rothermich MM; Hayes LA; Lovley DR
    Environ Sci Technol; 2002 Nov; 36(22):4811-7. PubMed ID: 12487304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions.
    Boopathy R
    Bioresour Technol; 2003 Jan; 86(2):171-5. PubMed ID: 12653283
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amino acids as main substrates for sulfate-reducing bacteria in surface sediment of a eutrophic bay.
    Takii S
    J Gen Appl Microbiol; 2003 Dec; 49(6):329-36. PubMed ID: 14747974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea.
    Mussmann M; Ishii K; Rabus R; Amann R
    Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment.
    Ramamoorthy S; Piotrowski JS; Langner HW; Holben WE; Morra MJ; Rosenzweig RF
    J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy).
    Fava F; Gentilucci S; Zanaroli G
    Chemosphere; 2003 Oct; 53(2):101-9. PubMed ID: 12892672
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulphate-reducing bacteria (SRB) in the Yangtze Estuary sediments: Abundance, distribution and implications for the bioavailibility of metals.
    Niu ZS; Pan H; Guo XP; Lu DP; Feng JN; Chen YR; Tou FY; Liu M; Yang Y
    Sci Total Environ; 2018 Sep; 634():296-304. PubMed ID: 29627553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.