These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 1575721)
1. Detection of a novel carbon-phosphorus bond cleavage activity in cell-free extracts of an environmental Pseudomonas fluorescens isolate. McMullan G; Quinn JP Biochem Biophys Res Commun; 1992 Apr; 184(2):1022-7. PubMed ID: 1575721 [TBL] [Abstract][Full Text] [Related]
2. In vitro characterization of a phosphate starvation-independent carbon-phosphorus bond cleavage activity in Pseudomonas fluorescens 23F. McMullan G; Quinn JP J Bacteriol; 1994 Jan; 176(2):320-4. PubMed ID: 8288524 [TBL] [Abstract][Full Text] [Related]
3. The construction of a whole-cell biosensor for phosphonoacetate, based on the LysR-like transcriptional regulator PhnR from Pseudomonas fluorescens 23F. Kulakova AN; Kulakov LA; McGrath JW; Quinn JP Microb Biotechnol; 2009 Mar; 2(2):234-40. PubMed ID: 21261917 [TBL] [Abstract][Full Text] [Related]
4. The purification and properties of phosphonoacetate hydrolase, a novel carbon-phosphorus bond-cleavage enzyme from Pseudomonas fluorescens 23F. McGrath JW; Wisdom GB; McMullan G; Larkin MJ; Quinn JP Eur J Biochem; 1995 Nov; 234(1):225-30. PubMed ID: 8529644 [TBL] [Abstract][Full Text] [Related]
5. In vitro cleavage of the carbon-phosphorus bond of phosphonopyruvate by cell extracts of an environmental Burkholderia cepacia isolate. Ternan NG; Quinn JP Biochem Biophys Res Commun; 1998 Jul; 248(2):378-81. PubMed ID: 9675144 [TBL] [Abstract][Full Text] [Related]
6. A metal-independent hydrolase from a Penicillium oxalicum strain able to use phosphonoacetic acid as the only phosphorus source. Klimek-Ochab M; Lejczak B; Forlani G FEMS Microbiol Lett; 2003 May; 222(2):205-9. PubMed ID: 12770709 [TBL] [Abstract][Full Text] [Related]
7. Cloning of the phosphonoacetate hydrolase gene from Pseudomonas fluorescens 23F encoding a new type of carbon-phosphorus bond cleaving enzyme and its expression in Escherichia coli and Pseudomonas putida. Kulakova AN; Kulakov LA; Quinn JP Gene; 1997 Aug; 195(1):49-53. PubMed ID: 9300819 [TBL] [Abstract][Full Text] [Related]
8. Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia. Forlani G; Klimek-Ochab M; Jaworski J; Lejczak B; Picco AM Mycol Res; 2006 Dec; 110(Pt 12):1455-63. PubMed ID: 17123811 [TBL] [Abstract][Full Text] [Related]
9. Detection of carbon-phosphorus lyase activity in cell free extracts of Enterobacter aerogenes. Murata K; Higaki N; Kimura A Biochem Biophys Res Commun; 1988 Nov; 157(1):190-5. PubMed ID: 3196331 [TBL] [Abstract][Full Text] [Related]
10. A role for carbon catabolite repression in the metabolism of phosphonoacetate by Agromyces fucosus Vs2. O'Loughlin SN; Graham RL; McMullan G; Ternan NG FEMS Microbiol Lett; 2006 Aug; 261(1):133-40. PubMed ID: 16842370 [TBL] [Abstract][Full Text] [Related]
11. Detection of phosphonoacetate degradation and phnA genes in soil bacteria from distinct geographical origins suggest its possible biogenic origin. Panas P; Ternan NG; Dooley JS; McMullan G Environ Microbiol; 2006 May; 8(5):939-45. PubMed ID: 16623750 [TBL] [Abstract][Full Text] [Related]
12. Structural and functional analysis of the phosphonoacetate hydrolase (phnA) gene region in Pseudomonas fluorescens 23F. Kulakova AN; Kulakov LA; Akulenko NV; Ksenzenko VN; Hamilton JT; Quinn JP J Bacteriol; 2001 Jun; 183(11):3268-75. PubMed ID: 11344133 [TBL] [Abstract][Full Text] [Related]
13. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase. Agarwal V; Borisova SA; Metcalf WW; van der Donk WA; Nair SK Chem Biol; 2011 Oct; 18(10):1230-40. PubMed ID: 22035792 [TBL] [Abstract][Full Text] [Related]
14. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM. Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368 [TBL] [Abstract][Full Text] [Related]
15. Phosphate-independent utilization of phosphonoacetic acid as sole phosphorus source by a psychrophilic strain of Geomyces pannorum P15. Klimek-Ochab M Folia Microbiol (Praha); 2014 Sep; 59(5):375-80. PubMed ID: 24570323 [TBL] [Abstract][Full Text] [Related]
16. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Buch A; Archana G; Naresh Kumar G Res Microbiol; 2008; 159(9-10):635-42. PubMed ID: 18996187 [TBL] [Abstract][Full Text] [Related]
17. Pyrimidine ribonucleoside catabolism in Pseudomonas fluorescens biotype A. Chu CP; West TP Antonie Van Leeuwenhoek; 1990 May; 57(4):253-7. PubMed ID: 2112895 [TBL] [Abstract][Full Text] [Related]
18. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW. McMullan G; Watkins R; Harper DB; Quinn JP Biochem Int; 1991 Sep; 25(2):271-9. PubMed ID: 1789794 [TBL] [Abstract][Full Text] [Related]
19. Initial in vitro characterisation of phosphonopyruvate hydrolase, a novel phosphate starvation-independent, carbon-phosphorus bond cleavage enzyme in Burkholderia cepacia Pal6. Ternan NG; Hamilton JT; Quinn JP Arch Microbiol; 2000 Jan; 173(1):35-41. PubMed ID: 10648102 [TBL] [Abstract][Full Text] [Related]
20. Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium. al-Aoukaty A; Appanna VD; Huang J FEMS Microbiol Lett; 1991 Oct; 67(3):283-90. PubMed ID: 1769535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]