BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 15757660)

  • 1. Ca2+-dependent K+ channels from rat olfactory cilia characterized in planar lipid bilayers.
    Castillo K; Bacigalupo J; Wolff D
    FEBS Lett; 2005 Mar; 579(7):1675-82. PubMed ID: 15757660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP cascade mediates the inhibitory odor response of isolated toad olfactory receptor neurons.
    Madrid R; Delgado R; Bacigalupo J
    J Neurophysiol; 2005 Sep; 94(3):1781-8. PubMed ID: 15817646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presence of Ca2+-dependent K+ channels in chemosensory cilia support a role in odor transduction.
    Delgado R; Saavedra MV; Schmachtenberg O; Sierralta J; Bacigalupo J
    J Neurophysiol; 2003 Sep; 90(3):2022-8. PubMed ID: 12801890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cilium-attached and excised patch-clamp recordings of odourant-activated Ca-dependent K channels from chemosensory cilia of olfactory receptor neurons.
    Delgado R; Bacigalupo J
    Eur J Neurosci; 2004 Dec; 20(11):2975-80. PubMed ID: 15579151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charybdotoxin-sensitive small conductance K(Ca) channel activated by bradykinin and substance P in endothelial cells.
    Sollini M; Frieden M; Bény JL
    Br J Pharmacol; 2002 Aug; 136(8):1201-9. PubMed ID: 12163354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Ca(2+)-activated Cl(-) channel currents recorded from toad olfactory cilia.
    Delgado R; Mura CV; Bacigalupo J
    BMC Neurosci; 2016 Apr; 17(1):17. PubMed ID: 27113933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ca2+-activated K+-current density is correlated with soma size in rat vestibular-afferent neurons in culture.
    Limón A; Pérez C; Vega R; Soto E
    J Neurophysiol; 2005 Dec; 94(6):3751-61. PubMed ID: 16107534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel classes in purified olfactory cilia membranes: planar lipid bilayer studies.
    Jorquera O; Latorre R; Labarca P
    Am J Physiol; 1995 Nov; 269(5 Pt 1):C1235-44. PubMed ID: 7491914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a charybdotoxin-sensitive intermediate conductance Ca2+-activated K+ channel in porcine coronary endothelium: relevance to EDHF.
    Bychkov R; Burnham MP; Richards GR; Edwards G; Weston AH; Félétou M; Vanhoutte PM
    Br J Pharmacol; 2002 Dec; 137(8):1346-54. PubMed ID: 12466245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-conductance calcium-activated potassium channels in neonatal rat intracardiac ganglion neurons.
    Franciolini F; Hogg R; Catacuzzeno L; Petris A; Trequattrini C; Adams DJ
    Pflugers Arch; 2001 Feb; 441(5):629-38. PubMed ID: 11294244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function.
    Edgerton JR; Reinhart PH
    J Physiol; 2003 Apr; 548(Pt 1):53-69. PubMed ID: 12576503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery.
    White R; Hiley CR
    Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endothelin activates large-conductance K+ channels in rat lactotrophs: reversal by long-term exposure to dopamine agonist.
    Kanyicska B; Freeman ME; Dryer SE
    Endocrinology; 1997 Aug; 138(8):3141-53. PubMed ID: 9231761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scaffolding proteins in highly purified rat olfactory cilia membranes.
    Saavedra MV; Smalla KH; Thomas U; Sandoval S; Olavarria K; Castillo K; Delgado MG; Delgado R; Gundelfinger ED; Bacigalupo J; Wyneken U
    Neuroreport; 2008 Jul; 19(11):1123-6. PubMed ID: 18596612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-activated potassium channels in the endothelium of intact rat aorta.
    Marchenko SM; Sage SO
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):53-60. PubMed ID: 8730582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ciliary K+ conductance sensitive to charibdotoxin underlies inhibitory responses in toad olfactory receptor neurons.
    Morales B; Labarca P; Bacigalupo J
    FEBS Lett; 1995 Feb; 359(1):41-4. PubMed ID: 7531652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery.
    Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED
    Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A family of calcium-dependent potassium channels from rat brain.
    Reinhart PH; Chung S; Levitan IB
    Neuron; 1989 Jan; 2(1):1031-41. PubMed ID: 2624739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+-activated K+ channels in murine endothelial cells: block by intracellular calcium and magnesium.
    Ledoux J; Bonev AD; Nelson MT
    J Gen Physiol; 2008 Feb; 131(2):125-35. PubMed ID: 18195387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Ca2+-activated K+ channels to hyperpolarizing after-potentials and discharge pattern in rat supraoptic neurones.
    Greffrath W; Magerl W; Disque-Kaiser U; Martin E; Reuss S; Boehmer G
    J Neuroendocrinol; 2004 Jul; 16(7):577-88. PubMed ID: 15214861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.