BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 15758069)

  • 61. Cell migration: Regulating the (missing) link.
    Legg K
    Nat Rev Mol Cell Biol; 2011 Apr; 12(4):207. PubMed ID: 21343948
    [No Abstract]   [Full Text] [Related]  

  • 62. Hypomyelinating Leukodystrophy 10 (HLD10)-Associated Mutations of PYCR2 Form Large Size Mitochondria, Inhibiting Oligodendroglial Cell Morphological Differentiation.
    Torii T; Shirai R; Kiminami R; Nishino S; Sato T; Sawaguchi S; Fukushima N; Seki Y; Miyamoto Y; Yamauchi J
    Neurol Int; 2022 Dec; 14(4):1062-1080. PubMed ID: 36548190
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Sortilin Modulates Schwann Cell Signaling and Remak Bundle Regeneration Following Nerve Injury.
    Ulrichsen M; Gonçalves NP; Mohseni S; Hjæresen S; Lisle TL; Molgaard S; Madsen NK; Andersen OM; Svenningsen ÅF; Glerup S; Nykjær A; Vægter CB
    Front Cell Neurosci; 2022; 16():856734. PubMed ID: 35634462
    [TBL] [Abstract][Full Text] [Related]  

  • 64. DBS is activated by EPHB2/SRC signaling-mediated tyrosine phosphorylation in HEK293 cells.
    Nakano S; Nishikawa M; Asaoka R; Ishikawa N; Ohwaki C; Sato K; Nagaoka H; Yamakawa H; Nagase T; Ueda H
    Mol Cell Biochem; 2019 Sep; 459(1-2):83-93. PubMed ID: 31089935
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Altered Brain Expression of Insulin and Insulin-Like Growth Factors in Frontotemporal Lobar Degeneration: Another Degenerative Disease Linked to Dysregulation of Insulin Metabolic Pathways.
    Liou CJ; Tong M; Vonsattel JP; de la Monte SM
    ASN Neuro; 2019; 11():1759091419839515. PubMed ID: 31081340
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Mutations in dock1 disrupt early Schwann cell development.
    Cunningham RL; Herbert AL; Harty BL; Ackerman SD; Monk KR
    Neural Dev; 2018 Aug; 13(1):17. PubMed ID: 30089513
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Dock8 interacts with Nck1 in mediating Schwann cell precursor migration.
    Miyamoto Y; Torii T; Kawahara K; Tanoue A; Yamauchi J
    Biochem Biophys Rep; 2016 Jul; 6():113-123. PubMed ID: 28955869
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cdc42 Promotes Schwann Cell Proliferation and Migration Through Wnt/β-Catenin and p38 MAPK Signaling Pathway After Sciatic Nerve Injury.
    Han B; Zhao JY; Wang WT; Li ZW; He AP; Song XY
    Neurochem Res; 2017 May; 42(5):1317-1324. PubMed ID: 28097464
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy.
    Pramanik S; Sulistio YA; Heese K
    Mol Neurobiol; 2017 Nov; 54(9):7401-7459. PubMed ID: 27815842
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Tyrosine Phosphorylation of SGEF Regulates RhoG Activity and Cell Migration.
    Okuyama Y; Umeda K; Negishi M; Katoh H
    PLoS One; 2016; 11(7):e0159617. PubMed ID: 27437949
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns.
    Fritz RD; Pertz O
    F1000Res; 2016; 5():. PubMed ID: 27158467
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Regulation of vesicle transport and cell motility by Golgi-localized Dbs.
    Fitzpatrick ER; Hu T; Ciccarelli BT; Whitehead IP
    Small GTPases; 2014; 5(4):1-12. PubMed ID: 25483302
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Genes involved in the osteoarthritis process identified through genome wide expression analysis in articular cartilage; the RAAK study.
    Ramos YF; den Hollander W; Bovée JV; Bomer N; van der Breggen R; Lakenberg N; Keurentjes JC; Goeman JJ; Slagboom PE; Nelissen RG; Bos SD; Meulenbelt I
    PLoS One; 2014; 9(7):e103056. PubMed ID: 25054223
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling.
    Guo L; Moon C; Zheng Y; Ratner N
    Glia; 2013 Nov; 61(11):1906-21. PubMed ID: 24014231
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genomics of pain in osteoarthritis.
    Thakur M; Dawes JM; McMahon SB
    Osteoarthritis Cartilage; 2013 Sep; 21(9):1374-82. PubMed ID: 23973152
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genetic contribution to radiographic severity in osteoarthritis of the knee.
    Valdes AM; Doherty S; Muir KR; Zhang W; Maciewicz RA; Wheeler M; Arden N; Cooper C; Doherty M
    Ann Rheum Dis; 2012 Sep; 71(9):1537-40. PubMed ID: 22615457
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The atypical Guanine-nucleotide exchange factor, dock7, negatively regulates schwann cell differentiation and myelination.
    Yamauchi J; Miyamoto Y; Hamasaki H; Sanbe A; Kusakawa S; Nakamura A; Tsumura H; Maeda M; Nemoto N; Kawahara K; Torii T; Tanoue A
    J Neurosci; 2011 Aug; 31(35):12579-92. PubMed ID: 21880919
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of a negative regulatory region for the exchange activity and characterization of T332I mutant of Rho guanine nucleotide exchange factor 10 (ARHGEF10).
    Chaya T; Shibata S; Tokuhara Y; Yamaguchi W; Matsumoto H; Kawahara I; Kogo M; Ohoka Y; Inagaki S
    J Biol Chem; 2011 Aug; 286(34):29511-20. PubMed ID: 21719701
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Low density lipoprotein receptor-related protein (LRP1) regulates Rac1 and RhoA reciprocally to control Schwann cell adhesion and migration.
    Mantuano E; Jo M; Gonias SL; Campana WM
    J Biol Chem; 2010 May; 285(19):14259-66. PubMed ID: 20197276
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Erythropoietin promotes Schwann cell migration and assembly of the provisional extracellular matrix by recruiting beta1 integrin to the cell surface.
    Inoue G; Gaultier A; Li X; Mantuano E; Richardson G; Takahashi K; Campana WM
    Glia; 2010 Mar; 58(4):399-409. PubMed ID: 19705458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.