BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15758124)

  • 1. Cascading ecological effects of low-level phosphorus enrichment in the Florida everglades.
    Gaiser EE; Trexler JC; Richards JH; Childers DL; Lee D; Edwards AL; Scinto LJ; Jayachandran K; Noe GB; Jones RD
    J Environ Qual; 2005; 34(2):717-23. PubMed ID: 15758124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland.
    Gaiser EE; Scinto LJ; Richards JH; Jayachandran K; Childers DL; Trexler JC; Jones RD
    Water Res; 2004 Feb; 38(3):507-16. PubMed ID: 14723918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecological effects of low-level phosphorus additions on two plant communities in a neotropical freshwater wetland ecosystem.
    Daoust RJ; Childers DL
    Oecologia; 2004 Dec; 141(4):672-86. PubMed ID: 15365807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
    Childers DL; Doren RF; Jones R; Noe GB; Rugge M; Scinto LJ
    J Environ Qual; 2003; 32(1):344-62. PubMed ID: 12549575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal patterns of soil phosphorus enrichment in Everglades water conservation area 2A.
    DeBusk WF; Newman S; Reddy KR
    J Environ Qual; 2001; 30(4):1438-46. PubMed ID: 11476523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of phosphorus retention in a South Florida treatment wetland.
    Nungesser MK; Chimney MJ
    Water Sci Technol; 2001; 44(11-12):109-15. PubMed ID: 11804081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progress in the research and demonstration of Everglades periphyton-based stormwater treatment areas.
    Bays JS; Knight RL; Wenkert L; Clarke R; Gong S
    Water Sci Technol; 2001; 44(11-12):123-30. PubMed ID: 11804083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural instability, multiple stable states, and hysteresis in periphyton driven by phosphorus enrichment in the Everglades.
    Dong Q; McCormick PV; Sklar FH; DeAngelis DL
    Theor Popul Biol; 2002 Feb; 61(1):1-13. PubMed ID: 11895379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting phosphorus in the Everglades.
    Lubick N
    Environ Sci Technol; 2007 Dec; 41(23):7954-5. PubMed ID: 18186318
    [No Abstract]   [Full Text] [Related]  

  • 10. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades.
    Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG
    Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication.
    Sherwood LJ; Qualls RG
    Environ Sci Technol; 2001 Oct; 35(20):4126-31. PubMed ID: 11686376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating ecological thresholds for phosphorus in the Everglades.
    Richardson CJ; King RS; Qian SS; Vaithiyanathan P; Qualls RG; Stow CA
    Environ Sci Technol; 2007 Dec; 41(23):8084-91. PubMed ID: 18186341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Everglades Nutrient Removal Project test cells: STA optimization--status of the research at the north site.
    Newman JM; Lynch T
    Water Sci Technol; 2001; 44(11-12):117-22. PubMed ID: 11804082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rise and fall of mercury methylation in an experimental reservoir.
    St Louis VL; Rudd JW; Kelly CA; Bodaly RA; Paterson MJ; Beaty KG; Hesslein RH; Heyes A; Majewski AR
    Environ Sci Technol; 2004 Mar; 38(5):1348-58. PubMed ID: 15046335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.
    Dierberg FE; DeBusk TA; Jackson SD; Chimney MJ; Pietro K
    Water Res; 2002 Mar; 36(6):1409-22. PubMed ID: 11996331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic phosphorus sequestration in subtropical treatment wetlands.
    Turner BL; Newman S; Newman JM
    Environ Sci Technol; 2006 Feb; 40(3):727-33. PubMed ID: 16509310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential internal loading of phosphorus in a wetland constructed in agricultural land.
    Pant HK; Reddy KR
    Water Res; 2003 Mar; 37(5):965-72. PubMed ID: 12553971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades.
    Irick DL; Gu B; Li YC; Inglett PW; Frederick PC; Ross MS; Wright AL; Ewe SM
    Sci Total Environ; 2015 Nov; 532():40-7. PubMed ID: 26057723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracing sources of sulfur in the Florida Everglades.
    Bates AL; Orem WH; Harvey JW; Spiker EC
    J Environ Qual; 2002; 31(1):287-99. PubMed ID: 11837434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent cattail expansion and possible relationships to water management: changes in Upper Taylor Slough (Everglades National Park, Florida, USA).
    Surratt D; Shinde D; Aumen N
    Environ Manage; 2012 Mar; 49(3):720-33. PubMed ID: 22207477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.