These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 15758222)

  • 1. Statistical assessment of a laboratory method for growing biofilms.
    Goeres DM; Loetterle LR; Hamilton MA; Murga R; Kirby DW; Donlan RM
    Microbiology (Reading); 2005 Mar; 151(Pt 3):757-762. PubMed ID: 15758222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growing reproducible biofilms with respect to structure and viable cell counts.
    Jackson G; Beyenal H; Rees WM; Lewandowski Z
    J Microbiol Methods; 2001 Oct; 47(1):1-10. PubMed ID: 11566221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drip flow reactor method exhibits excellent reproducibility based on a 10-laboratory collaborative study.
    Goeres DM; Parker AE; Walker DK; Meier K; Lorenz LA; Buckingham-Meyer K
    J Microbiol Methods; 2020 Jul; 174():105963. PubMed ID: 32454049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions.
    Stewart CR; Muthye V; Cianciotto NP
    PLoS One; 2012; 7(11):e50560. PubMed ID: 23185637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor.
    Goeres DM; Hamilton MA; Beck NA; Buckingham-Meyer K; Hilyard JD; Loetterle LR; Lorenz LA; Walker DK; Stewart PS
    Nat Protoc; 2009; 4(5):783-8. PubMed ID: 19528953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time.
    Donlan RM; Piede JA; Heyes CD; Sanii L; Murga R; Edmonds P; El-Sayed I; El-Sayed MA
    Appl Environ Microbiol; 2004 Aug; 70(8):4980-8. PubMed ID: 15294838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of drip flow and rotating disk reactors for Staphylococcus aureus biofilm analysis.
    Schwartz K; Stephenson R; Hernandez M; Jambang N; Boles BR
    J Vis Exp; 2010 Dec; (46):. PubMed ID: 21206478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A laboratory hot tub model for disinfectant efficacy evaluation.
    Goeres DM; Loetterle LR; Hamilton MA
    J Microbiol Methods; 2007 Jan; 68(1):184-92. PubMed ID: 16949693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A repeatable laboratory method for testing the efficacy of biocides against toilet bowl biofilms.
    Pitts B; Willse A; McFeters GA; Hamilton MA; Zelver N; Stewart PS
    J Appl Microbiol; 2001 Jul; 91(1):110-7. PubMed ID: 11442720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistence of biofilm-associated Escherichia coli and Pseudomonas aeruginosa in groundwater and treated effluent in a laboratory model system.
    Banning N; Toze S; Mee BJ
    Microbiology (Reading); 2003 Jan; 149(Pt 1):47-55. PubMed ID: 12576579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ruggedness and reproducibility of the MBEC biofilm disinfectant efficacy test.
    Parker AE; Walker DK; Goeres DM; Allan N; Olson ME; Omar A
    J Microbiol Methods; 2014 Jul; 102():55-64. PubMed ID: 24815513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-biofilm activity of silver nanoparticles against different microorganisms.
    Martinez-Gutierrez F; Boegli L; Agostinho A; Sánchez EM; Bach H; Ruiz F; James G
    Biofouling; 2013; 29(6):651-60. PubMed ID: 23731460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of biofilm disinfectant efficacy tests.
    Buckingham-Meyer K; Goeres DM; Hamilton MA
    J Microbiol Methods; 2007 Aug; 70(2):236-44. PubMed ID: 17524505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates.
    Stewart PS; Rayner J; Roe F; Rees WM
    J Appl Microbiol; 2001 Sep; 91(3):525-32. PubMed ID: 11556920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic monitoring of early-stage biofilm growth on polymeric surfaces.
    Kujundzic E; Fonseca AC; Evans EA; Peterson M; Greenberg AR; Hernandez M
    J Microbiol Methods; 2007 Mar; 68(3):458-67. PubMed ID: 17141898
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growing and analyzing biofilms in fermenters.
    Ramey BE; Parsek MR
    Curr Protoc Microbiol; 2005 Oct; Chapter 1():Unit 1B.3. PubMed ID: 18770546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypothesis for the role of nutrient starvation in biofilm detachment.
    Hunt SM; Werner EM; Huang B; Hamilton MA; Stewart PS
    Appl Environ Microbiol; 2004 Dec; 70(12):7418-25. PubMed ID: 15574944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm contamination of high-touched surfaces in intensive care units: epidemiology and potential impacts.
    Costa DM; Johani K; Melo DS; Lopes LKO; Lopes Lima LKO; Tipple AFV; Hu H; Vickery K
    Lett Appl Microbiol; 2019 Apr; 68(4):269-276. PubMed ID: 30758060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing a laboratory model of dental unit waterlines bacterial biofilms using a CDC biofilm reactor.
    Yoon HY; Lee SY
    Biofouling; 2017 Nov; 33(10):917-926. PubMed ID: 29160100
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Data Quality in Biofilm High-Throughput Routine Analysis: Intralaboratory Protocol Adaptation and Experiment Reproducibility.
    Jorge P; Lourenço A; Pereira MO
    J AOAC Int; 2015; 98(6):1721-7. PubMed ID: 26651585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.