These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 15758409)

  • 1. Functional osteoblastic ionotropic glutamate receptors are a prerequisite for bone formation.
    Taylor AF
    J Musculoskelet Neuronal Interact; 2002 Sep; 2(5):415-22. PubMed ID: 15758409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteoblastic glutamate receptor function regulates bone formation and resorption.
    Taylor AF
    J Musculoskelet Neuronal Interact; 2002 Mar; 2(3):285-90. PubMed ID: 15758456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wnt and steroid pathways control glutamate signalling by regulating glutamine synthetase activity in osteoblastic cells.
    Olkku A; Mahonen A
    Bone; 2008 Sep; 43(3):483-93. PubMed ID: 18555765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Pre-synaptic' vesicular glutamate release mechanisms in osteoblasts.
    Bhangu PS
    J Musculoskelet Neuronal Interact; 2003 Mar; 3(1):17-29. PubMed ID: 15758362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamatergic innervation in bone.
    Chenu C
    Microsc Res Tech; 2002 Jul; 58(2):70-6. PubMed ID: 12203705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calreticulin mediated glucocorticoid receptor export is involved in beta-catenin translocation and Wnt signalling inhibition in human osteoblastic cells.
    Olkku A; Mahonen A
    Bone; 2009 Apr; 44(4):555-65. PubMed ID: 19100874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabotropic glutamate receptors as a strategic target for the treatment of epilepsy.
    Alexander GM; Godwin DW
    Epilepsy Res; 2006 Sep; 71(1):1-22. PubMed ID: 16787741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of osteoblast differentiation by slit2 in osteoblastic cells.
    Sun H; Dai K; Tang T; Zhang X
    Cells Tissues Organs; 2009; 190(2):69-80. PubMed ID: 19033678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway.
    Richardson JA; Amantea CM; Kianmahd B; Tetradis S; Lieberman JR; Hahn TJ; Parhami F
    J Cell Biochem; 2007 Apr; 100(5):1131-45. PubMed ID: 17031848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular nucleotides activate Runx2 in the osteoblast-like HOBIT cell line: a possible molecular link between mechanical stress and osteoblasts' response.
    Costessi A; Pines A; D'Andrea P; Romanello M; Damante G; Cesaratto L; Quadrifoglio F; Moro L; Tell G
    Bone; 2005 Mar; 36(3):418-32. PubMed ID: 15777650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of glutamate transporters in bone cell signalling.
    Mason DJ
    J Musculoskelet Neuronal Interact; 2004 Jun; 4(2):128-31. PubMed ID: 15615110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic regulation of bone resorption.
    Chenu C
    J Musculoskelet Neuronal Interact; 2002 Sep; 2(5):423-31. PubMed ID: 15758410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletions of genes encoding calcitonin/alpha-CGRP, amylin and calcitonin receptor have given new and unexpected insights into the function of calcitonin receptors and calcitonin receptor-like receptors in bone.
    Lerner UH
    J Musculoskelet Neuronal Interact; 2006; 6(1):87-95. PubMed ID: 16675892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone biology and physiology: implications for novel osteoblastic osteosarcoma treatments?
    Spangler JG
    Med Hypotheses; 2008; 70(2):281-6. PubMed ID: 17683874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio.
    Wiren KM; Toombs AR; Semirale AA; Zhang X
    Bone; 2006 May; 38(5):637-51. PubMed ID: 16413235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone loss induced by Runx2 over-expression in mice is blunted by osteoblastic over-expression of TIMP-1.
    Schiltz C; Prouillet C; Marty C; Merciris D; Collet C; de Vernejoul MC; Geoffroy V
    J Cell Physiol; 2010 Jan; 222(1):219-29. PubMed ID: 19780057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of continuous activation of vitamin D and Wnt response pathways on osteoblastic proliferation and differentiation.
    Shi YC; Worton L; Esteban L; Baldock P; Fong C; Eisman JA; Gardiner EM
    Bone; 2007 Jul; 41(1):87-96. PubMed ID: 17513186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both direct and collagen-mediated signals are required for active vitamin D3-elicited differentiation of human osteoblastic cells: roles of osterix, an osteoblast-related transcription factor.
    Maehata Y; Takamizawa S; Ozawa S; Kato Y; Sato S; Kubota E; Hata R
    Matrix Biol; 2006 Jan; 25(1):47-58. PubMed ID: 16266799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells.
    Nagata A; Tanaka T; Minezawa A; Poyurovsky M; Mayama T; Suzuki S; Hashimoto N; Yoshida T; Suyama K; Miyata A; Hosokawa H; Nakayama T; Tatsuno I
    J Cell Physiol; 2009 Oct; 221(1):75-83. PubMed ID: 19496170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo.
    Satomura K; Tobiume S; Tokuyama R; Yamasaki Y; Kudoh K; Maeda E; Nagayama M
    J Pineal Res; 2007 Apr; 42(3):231-9. PubMed ID: 17349020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.