BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 15758646)

  • 41. Organic solute transporter OSTα/β is overexpressed in nonalcoholic steatohepatitis and modulated by drugs associated with liver injury.
    Malinen MM; Ali I; Bezençon J; Beaudoin JJ; Brouwer KLR
    Am J Physiol Gastrointest Liver Physiol; 2018 May; 314(5):G597-G609. PubMed ID: 29420067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel Aspects in the Management of Cholestatic Liver Diseases.
    Chazouillères O
    Dig Dis; 2016; 34(4):340-6. PubMed ID: 27170387
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease.
    Beuers U; Spengler U; Zwiebel FM; Pauletzki J; Fischer S; Paumgartner G
    Hepatology; 1992 Apr; 15(4):603-8. PubMed ID: 1551637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of ursodeoxycholic acid on bile acid profiles and intestinal detoxification machinery in primary biliary cirrhosis and health.
    Dilger K; Hohenester S; Winkler-Budenhofer U; Bastiaansen BA; Schaap FG; Rust C; Beuers U
    J Hepatol; 2012 Jul; 57(1):133-40. PubMed ID: 22414767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Bile formation and cholestasis].
    Jansen PL; Müller M; Kuipers F
    Ned Tijdschr Geneeskd; 2000 Dec; 144(50):2384-91. PubMed ID: 11145092
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hepatobiliary transport.
    Kullak-Ublick GA; Beuers U; Paumgartner G
    J Hepatol; 2000; 32(1 Suppl):3-18. PubMed ID: 10728790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel and emerging therapies for cholestatic liver diseases.
    Goldstein J; Levy C
    Liver Int; 2018 Sep; 38(9):1520-1535. PubMed ID: 29758112
    [TBL] [Abstract][Full Text] [Related]  

  • 48. New therapies target the toxic consequences of cholestatic liver disease.
    Jansen PLM
    Expert Rev Gastroenterol Hepatol; 2018 Mar; 12(3):277-285. PubMed ID: 29310470
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inflammation mediated down-regulation of hepatobiliary transporters contributes to intrahepatic cholestasis and liver damage in murine biliary atresia.
    Yang H; Plösch T; Lisman T; Gouw AS; Porte RJ; Verkade HJ; Hulscher JB
    Pediatr Res; 2009 Oct; 66(4):380-5. PubMed ID: 19581828
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Yangonin protects against cholestasis and hepatotoxity via activation of farnesoid X receptor in vivo and in vitro.
    Gao X; Fu T; Wang C; Ning C; Liu K; Liu Z; Sun H; Ma X; Huo X; Yang X; Zou M; Meng Q
    Toxicol Appl Pharmacol; 2018 Jun; 348():105-116. PubMed ID: 29660435
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The current status of ursodeoxycholate in the treatment of chronic cholestatic liver disease.
    Luketic VA; Sanyal AJ
    Gastroenterologist; 1994 Mar; 2(1):74-9. PubMed ID: 8055235
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Drug-induced cholestasis.
    Erlinger S
    J Hepatol; 1997; 26 Suppl 1():1-4. PubMed ID: 9138122
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defective canalicular transport and toxicity of dietary ursodeoxycholic acid in the abcb11-/- mouse: transport and gene expression studies.
    Wang R; Liu L; Sheps JA; Forrest D; Hofmann AF; Hagey LR; Ling V
    Am J Physiol Gastrointest Liver Physiol; 2013 Aug; 305(4):G286-94. PubMed ID: 23764895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action.
    Poupon R
    Clin Res Hepatol Gastroenterol; 2012 Sep; 36 Suppl 1():S3-12. PubMed ID: 23141891
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development of a mechanistic biokinetic model for hepatic bile acid handling to predict possible cholestatic effects of drugs.
    Notenboom S; Weigand KM; Proost JH; van Lipzig MMH; van de Steeg E; van den Broek PHH; Greupink R; Russel FGM; Groothuis GMM
    Eur J Pharm Sci; 2018 Mar; 115():175-184. PubMed ID: 29309877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Complementary stimulation of hepatobiliary transport and detoxification systems by rifampicin and ursodeoxycholic acid in humans.
    Marschall HU; Wagner M; Zollner G; Fickert P; Diczfalusy U; Gumhold J; Silbert D; Fuchsbichler A; Benthin L; Grundström R; Gustafsson U; Sahlin S; Einarsson C; Trauner M
    Gastroenterology; 2005 Aug; 129(2):476-85. PubMed ID: 16083704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The pathophysiology of cholestasis with special reference to primary biliary cirrhosis.
    Jansen PL
    Baillieres Best Pract Res Clin Gastroenterol; 2000 Aug; 14(4):571-83. PubMed ID: 10976015
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury.
    Stedman CA; Liddle C; Coulter SA; Sonoda J; Alvarez JG; Moore DD; Evans RM; Downes M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):2063-8. PubMed ID: 15684063
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hepatobiliary transport kinetics of the conjugated bile acid tracer
    Ørntoft NW; Munk OL; Frisch K; Ott P; Keiding S; Sørensen M
    J Hepatol; 2017 Aug; 67(2):321-327. PubMed ID: 28249726
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Lithocholic acid feeding induces segmental bile duct obstruction and destructive cholangitis in mice.
    Fickert P; Fuchsbichler A; Marschall HU; Wagner M; Zollner G; Krause R; Zatloukal K; Jaeschke H; Denk H; Trauner M
    Am J Pathol; 2006 Feb; 168(2):410-22. PubMed ID: 16436656
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.