These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15759322)

  • 1. The development of an algorithm for the mass spectral interpretation of phosphoproteins.
    Zhao Y; Lin YH
    Proteomics; 2005 Mar; 5(4):843-5. PubMed ID: 15759322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liquid secondary ion mass spectrometry of phosphorylated and sulfated peptides and proteins.
    Gibson BW; Cohen P
    Methods Enzymol; 1990; 193():480-501. PubMed ID: 2127451
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphopeptide/phosphoprotein mapping by electron capture dissociation mass spectrometry.
    Shi SD; Hemling ME; Carr SA; Horn DM; Lindh I; McLafferty FW
    Anal Chem; 2001 Jan; 73(1):19-22. PubMed ID: 11195502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative in vitro kinase reaction as a guide for phosphoprotein analysis by mass spectrometry.
    Goodlett DR; Aebersold R; Watts JD
    Rapid Commun Mass Spectrom; 2000; 14(5):344-8. PubMed ID: 10700036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry.
    Liao PC; Leykam J; Andrews PC; Gage DA; Allison J
    Anal Biochem; 1994 May; 219(1):9-20. PubMed ID: 8059960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification.
    Xu CF; Lu Y; Ma J; Mohammadi M; Neubert TA
    Mol Cell Proteomics; 2005 Jun; 4(6):809-18. PubMed ID: 15753120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of protein phosphorylation by mass spectrometry.
    Garcia BA; Shabanowitz J; Hunt DF
    Methods; 2005 Mar; 35(3):256-64. PubMed ID: 15722222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry.
    Ma Y; Lu Y; Zeng H; Ron D; Mo W; Neubert TA
    Rapid Commun Mass Spectrom; 2001; 15(18):1693-700. PubMed ID: 11555868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of protein phosphorylation by hypothesis-driven multiple-stage mass spectrometry.
    Chang EJ; Archambault V; McLachlin DT; Krutchinsky AN; Chait BT
    Anal Chem; 2004 Aug; 76(15):4472-83. PubMed ID: 15283590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mass spectrometric analysis of 21 phosphorylation sites in the internal repeat of rat profilaggrin, precursor of an intermediate filament associated protein.
    Resing KA; Johnson RS; Walsh KA
    Biochemistry; 1995 Jul; 34(29):9477-87. PubMed ID: 7626618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry.
    Annan RS; Zappacosta F
    Methods Biochem Anal; 2005; 45():85-106. PubMed ID: 19235292
    [No Abstract]   [Full Text] [Related]  

  • 12. Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins.
    Kjellström S; Jensen ON
    Anal Chem; 2004 Sep; 76(17):5109-17. PubMed ID: 15373450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resources for Assignment of Phosphorylation Sites on Peptides and Proteins.
    Ravikumar V; Macek B; Mijakovic I
    Methods Mol Biol; 2016; 1355():293-306. PubMed ID: 26584934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEMS 3.0: algorithms and computational tools for tandem mass spectrometry based identification of post-translational modifications in proteins.
    Matthiesen R; Trelle MB; Højrup P; Bunkenborg J; Jensen ON
    J Proteome Res; 2005; 4(6):2338-47. PubMed ID: 16335983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative phosphorylation site mapping from gel-derived proteins using a multidimensional ES/MS-based approach.
    Zappacosta F; Huddleston MJ; Annan RS
    Methods Mol Biol; 2004; 284():91-110. PubMed ID: 15173611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mass spectrometry based predictive strategy reveals ADAP1 is phosphorylated at tyrosine 364.
    Reisdorph R; Littrell-Miller B; Powell R; Reisdorph N
    Rapid Commun Mass Spectrom; 2018 Aug; 32(15):1173-1180. PubMed ID: 29659066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mass spectrometric study on the in vivo posttranslational modification of GAP-43.
    Taniguchi H; Suzuki M; Manenti S; Titani K
    J Biol Chem; 1994 Sep; 269(36):22481-4. PubMed ID: 8077193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIQED: automated identification and quantification of protein modifications from DIA-MS data.
    Meyer JG; Mukkamalla S; Steen H; Nesvizhskii AI; Gibson BW; Schilling B
    Nat Methods; 2017 Jun; 14(7):646-647. PubMed ID: 28661500
    [No Abstract]   [Full Text] [Related]  

  • 19. Analysis of protein phosphorylation by mass spectrometry.
    Areces LB; Matafora V; Bachi A
    Eur J Mass Spectrom (Chichester); 2004; 10(3):383-92. PubMed ID: 15187297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of phosphorylated proteins in the human pituitary.
    Giorgianni F; Beranova-Giorgianni S; Desiderio DM
    Proteomics; 2004 Mar; 4(3):587-98. PubMed ID: 14997482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.