BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 15759572)

  • 1. Discrimination of pathological voices using a time-frequency approach.
    Umapathy K; Krishnan S; Parsa V; Jamieson DG
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated speech analysis applied to laryngeal disease categorization.
    Gelzinis A; Verikas A; Bacauskiene M
    Comput Methods Programs Biomed; 2008 Jul; 91(1):36-47. PubMed ID: 18346812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic analysis and detection of hypernasality using a group delay function.
    Vijayalakshmi P; Reddy MR; O'Shaughnessy D
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):621-9. PubMed ID: 17405369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical analysis of the impact of glottal features in the classification of clinical depression in speech.
    Moore E; Clements MA; Peifer JW; Weisser L
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):96-107. PubMed ID: 18232351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters.
    Godino-Llorente JI; Gómez-Vilda P; Blanco-Velasco M
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1943-53. PubMed ID: 17019858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis.
    Behroozmand R; Almasganj F
    Comput Biol Med; 2007 Apr; 37(4):474-85. PubMed ID: 17034780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice pathology detection based eon short-term jitter estimations in running speech.
    Vasilakis M; Stylianou Y
    Folia Phoniatr Logop; 2009; 61(3):153-70. PubMed ID: 19571550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral pattern complexity analysis and the quantification of voice normality in healthy and radiotherapy patient groups.
    Moore C; Manickam K; Willard T; Jones S; Slevin N; Shalet S
    Med Eng Phys; 2004 May; 26(4):291-301. PubMed ID: 15121054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVM-based identification of pathological voices.
    Chen W; Peng C; Zhu X; Wan B; Wei D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3786-9. PubMed ID: 18002822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals.
    Umapathy K; Krishnan S
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):517-23. PubMed ID: 16532778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear analysis and classification of vocal disorders.
    Aghazadeh BS; Khadivi H; Nikkhah-Bahrami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6200-3. PubMed ID: 18003437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathological speech signal analysis using time-frequency approaches.
    Ghoraani B; Umapathy K; Sugavaneswaran L; Krishnan S
    Crit Rev Biomed Eng; 2012; 40(1):63-95. PubMed ID: 22428799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological voice assessment.
    Dibazar AA; Berger TW; Narayanan SS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1669-73. PubMed ID: 17946059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silence-breathing-snore classification from snore-related sounds.
    Karunajeewa AS; Abeyratne UR; Hukins C
    Physiol Meas; 2008 Feb; 29(2):227-43. PubMed ID: 18256454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination between pathological and normal voices using GMM-SVM approach.
    Wang X; Zhang J; Yan Y
    J Voice; 2011 Jan; 25(1):38-43. PubMed ID: 20137892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.