These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 15759572)

  • 1. Discrimination of pathological voices using a time-frequency approach.
    Umapathy K; Krishnan S; Parsa V; Jamieson DG
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):421-30. PubMed ID: 15759572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Telephony-based voice pathology assessment using automated speech analysis.
    Moran RJ; Reilly RB; de Chazal P; Lacy PD
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):468-77. PubMed ID: 16532773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic detection of voice impairments by means of short-term cepstral parameters and neural network based detectors.
    Godino-Llorente JI; Gómez-Vilda P
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):380-4. PubMed ID: 14765711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated speech analysis applied to laryngeal disease categorization.
    Gelzinis A; Verikas A; Bacauskiene M
    Comput Methods Programs Biomed; 2008 Jul; 91(1):36-47. PubMed ID: 18346812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic analysis and detection of hypernasality using a group delay function.
    Vijayalakshmi P; Reddy MR; O'Shaughnessy D
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):621-9. PubMed ID: 17405369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical analysis of the impact of glottal features in the classification of clinical depression in speech.
    Moore E; Clements MA; Peifer JW; Weisser L
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):96-107. PubMed ID: 18232351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensionality reduction of a pathological voice quality assessment system based on Gaussian mixture models and short-term cepstral parameters.
    Godino-Llorente JI; Gómez-Vilda P; Blanco-Velasco M
    IEEE Trans Biomed Eng; 2006 Oct; 53(10):1943-53. PubMed ID: 17019858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal selection of wavelet-packet-based features using genetic algorithm in pathological assessment of patients' speech signal with unilateral vocal fold paralysis.
    Behroozmand R; Almasganj F
    Comput Biol Med; 2007 Apr; 37(4):474-85. PubMed ID: 17034780
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice pathology detection based eon short-term jitter estimations in running speech.
    Vasilakis M; Stylianou Y
    Folia Phoniatr Logop; 2009; 61(3):153-70. PubMed ID: 19571550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral pattern complexity analysis and the quantification of voice normality in healthy and radiotherapy patient groups.
    Moore C; Manickam K; Willard T; Jones S; Slevin N; Shalet S
    Med Eng Phys; 2004 May; 26(4):291-301. PubMed ID: 15121054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVM-based identification of pathological voices.
    Chen W; Peng C; Zhu X; Wan B; Wei D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3786-9. PubMed ID: 18002822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified local discriminant bases algorithm and its application in analysis of human knee joint vibration signals.
    Umapathy K; Krishnan S
    IEEE Trans Biomed Eng; 2006 Mar; 53(3):517-23. PubMed ID: 16532778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear analysis and classification of vocal disorders.
    Aghazadeh BS; Khadivi H; Nikkhah-Bahrami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6200-3. PubMed ID: 18003437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathological speech signal analysis using time-frequency approaches.
    Ghoraani B; Umapathy K; Sugavaneswaran L; Krishnan S
    Crit Rev Biomed Eng; 2012; 40(1):63-95. PubMed ID: 22428799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathological voice assessment.
    Dibazar AA; Berger TW; Narayanan SS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1669-73. PubMed ID: 17946059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of jitter measures in non-quasi-periodic voices. Part II: the effect of noise.
    Manfredi C; Giordano A; Schoentgen J; Fraj S; Bocchi L; Dejonckere P
    Logoped Phoniatr Vocol; 2011 Jul; 36(2):78-89. PubMed ID: 21609247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward improved ecological validity in the acoustic measurement of overall voice quality: combining continuous speech and sustained vowels.
    Maryn Y; Corthals P; Van Cauwenberge P; Roy N; De Bodt M
    J Voice; 2010 Sep; 24(5):540-55. PubMed ID: 19883993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silence-breathing-snore classification from snore-related sounds.
    Karunajeewa AS; Abeyratne UR; Hukins C
    Physiol Meas; 2008 Feb; 29(2):227-43. PubMed ID: 18256454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination between pathological and normal voices using GMM-SVM approach.
    Wang X; Zhang J; Yan Y
    J Voice; 2011 Jan; 25(1):38-43. PubMed ID: 20137892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Voice Pathology Detection With Running Speech by Using Estimation of Auditory Spectrum and Cepstral Coefficients Based on the All-Pole Model.
    Ali Z; Elamvazuthi I; Alsulaiman M; Muhammad G
    J Voice; 2016 Nov; 30(6):757.e7-757.e19. PubMed ID: 26522263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.