BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 15759586)

  • 1. Comparative analysis of hematocrit measurements by dielectric and impedance techniques.
    Treo EF; Felice CJ; Tirado MC; Valentinuzzi ME; Cervantes DO
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):549-52. PubMed ID: 15759586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hematocrit measurement by dielectric spectroscopy.
    Treo EF; Felice CJ; Tirado MC; Valentinuzzi ME; Cervantes DO
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):124-7. PubMed ID: 15651572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of mechanical properties of human trabecular bone by electrical measurements.
    Sierpowska J; Hakulinen MA; Töyräs J; Day JS; Weinans H; Jurvelin JS; Lappalainen R
    Physiol Meas; 2005 Apr; 26(2):S119-31. PubMed ID: 15798225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal resolution of the skin impedance measurement in frequency-domain method.
    Fukumoto T; Eom GM; Ohba S; Futami R; Hoshimiya N
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):170-3. PubMed ID: 17260871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comments on "algorithm for tissue ischemia estimation based on electrical impedance spectroscopy".
    Grimnes S; Martinsen OG
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):344. PubMed ID: 17278593
    [No Abstract]   [Full Text] [Related]  

  • 6. Catheter-based impedance measurements in the right atrium for continuously monitoring hematocrit and estimating blood viscosity changes; an in vivo feasibility study in swine.
    Pop GA; Chang ZY; Slager CJ; Kooij BJ; van Deel ED; Moraru L; Quak J; Meijer GC; Duncker DJ
    Biosens Bioelectron; 2004 Jul; 19(12):1685-93. PubMed ID: 15142603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of Cole parameters in multiple frequency bioelectrical impedance analysis using only the measurement of impedances.
    Ward LC; Essex T; Cornish BH
    Physiol Meas; 2006 Sep; 27(9):839-50. PubMed ID: 16868350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical impedance spectroscopy of the human prostate.
    Halter RJ; Hartov A; Heaney JA; Paulsen KD; Schned AR
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1321-7. PubMed ID: 17605363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional electrical impedance tomography: a topology optimization approach.
    Mello LA; de Lima CR; Amato MB; Lima RG; Silva EC
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):531-40. PubMed ID: 18269988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase artefact reduction in magnetic resonance electrical impedance tomography (MREIT).
    Lee BI; Park C; Pyo HC; Kwon O; Woo EJ
    Phys Med Biol; 2006 Oct; 51(20):5277-88. PubMed ID: 17019038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach for detection of leg movement using segmental electrical impedance changes.
    Song CG; Seo JH; Kim KS; Youn DY; Kim DW
    J Med Eng Technol; 2005; 29(1):42-6. PubMed ID: 15764382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring of lung edema using focused impedance spectroscopy: a feasibility study.
    Mayer M; Brunner P; Merwa R; Scharfetter H
    Physiol Meas; 2005 Jun; 26(3):185-92. PubMed ID: 15798294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heart rate detection from plantar bioimpedance measurements.
    Gonzalez-Landaeta R; Casas O; Pallàs-Areny R
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1163-7. PubMed ID: 18334409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time and spatial invariance of impedance signals in limbs of healthy subjects by time-frequency analysis.
    Collette M; Humeau A; Abraham P
    Ann Biomed Eng; 2008 Mar; 36(3):444-51. PubMed ID: 18205048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple linear models of scanning impedance imaging for fast reconstruction of relative conductivity of biological samples.
    Oliphant TE; Liu H; Hawkins AR; Schultz SM
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2323-32. PubMed ID: 17073338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new geometric factor for in situ resistivity measurement using four slender cylindrical electrodes.
    Chong CE; Tan YL
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):594-602. PubMed ID: 18269995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic forward model for electroencephalography source analysis.
    Plis SM; George JS; Jun SC; Ranken DM; Volegov PL; Schmidt DM
    Phys Med Biol; 2007 Sep; 52(17):5309-27. PubMed ID: 17762088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parametric EIT for monitoring cardiac stroke volume.
    Zlochiver S; Freimark D; Arad M; Adunsky A; Abboud S
    Physiol Meas; 2006 May; 27(5):S139-46. PubMed ID: 16636406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cole electrical impedance model--a critique and an alternative.
    Grimnes S; Martinsen OG
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):132-5. PubMed ID: 15651574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of blood-flow-induced conductivity changes to measured impedance.
    Wtorek J; Poliński A
    IEEE Trans Biomed Eng; 2005 Jan; 52(1):41-9. PubMed ID: 15651563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.