These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 15759672)

  • 1. Equations for finite-difference, time-domain simulation of sound propagation in moving inhomogeneous media and numerical implementation.
    Ostashev VE; Wilson DK; Liu L; Aldridge DF; Symons NP; Marlin D
    J Acoust Soc Am; 2005 Feb; 117(2):503-17. PubMed ID: 15759672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equations for finite-difference, time-domain simulation of sound propagation in moving media with arbitrary Mach numbers.
    Ostashev VE; Van Renterghem T
    J Acoust Soc Am; 2023 Apr; 153(4):2203. PubMed ID: 37092910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-difference time-domain synthesis of infrasound propagation through an absorbing atmosphere.
    de Groot-Hedlin C
    J Acoust Soc Am; 2008 Sep; 124(3):1430-41. PubMed ID: 19045635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wave and extra-wide-angle parabolic equations for sound propagation in a moving atmosphere.
    Ostashev VE; Wilson DK; Muhlestein MB
    J Acoust Soc Am; 2020 Jun; 147(6):3969. PubMed ID: 32611146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extended Fourier pseudospectral time-domain method for atmospheric sound propagation.
    Hornikx M; Waxler R; Forssén J
    J Acoust Soc Am; 2010 Oct; 128(4):1632-46. PubMed ID: 20968336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled-mode sound propagation in a range-dependent, moving fluid.
    Godin OA
    J Acoust Soc Am; 2002 May; 111(5 Pt 1):1984-95. PubMed ID: 12051418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid.
    Godin OA
    J Acoust Soc Am; 2002 Oct; 112(4):1269-75. PubMed ID: 12398433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of infrasound propagation based on high-order finite difference solutions of the Navier-Stokes equations.
    Marsden O; Bogey C; Bailly C
    J Acoust Soc Am; 2014 Mar; 135(3):1083-95. PubMed ID: 24606252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-dimensional finite-difference time-domain formulation for sound propagation in a temperature-dependent elastomer-fluid medium.
    Huang Y; Hou H; Oterkus S; Wei Z; Gao N
    J Acoust Soc Am; 2020 Jan; 147(1):428. PubMed ID: 32007005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
    de Groot-Hedlin CD
    J Acoust Soc Am; 2012 Aug; 132(2):646-56. PubMed ID: 22894187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-preserving narrow- and wide-angle parabolic equations for sound propagation in moving mediaa).
    Ostashev VE; Colas J; Dragna D; Wilson DK
    J Acoust Soc Am; 2024 Feb; 155(2):1086-1102. PubMed ID: 38341733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A linearized Eulerian sound propagation model for studies of complex meteorological effects.
    Blumrich R; Heimann D
    J Acoust Soc Am; 2002 Aug; 112(2):446-55. PubMed ID: 12186025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-domain simulations of sound propagation in a stratified atmosphere over an impedance ground.
    Cotté B; Blanc-Benon P
    J Acoust Soc Am; 2009 May; 125(5):EL202-7. PubMed ID: 19425623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear parabolic equation model for finite-amplitude sound propagation over porous ground layers.
    Leissing T; Jean P; Defrance J; Soize C
    J Acoust Soc Am; 2009 Aug; 126(2):572-81. PubMed ID: 19640021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three dimensional parabolic equation method for sound propagation in moving inhomogeneous media.
    Cheng R; Morris PJ; Brentner KS
    J Acoust Soc Am; 2009 Oct; 126(4):1700-10. PubMed ID: 19813786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite difference method for a coupled model of wave propagation in poroelastic materials.
    Zhang Y; Song L; Deffenbaugh M; Toksöz MN
    J Acoust Soc Am; 2010 May; 127(5):2847-55. PubMed ID: 21117735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
    Ehrhardt L; Cheinet S; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2013 Apr; 133(4):1922-33. PubMed ID: 23556562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.