These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 15759678)

  • 1. Nonlinear focusing of acoustic shock waves at a caustic cusp.
    Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2005 Feb; 117(2):566-77. PubMed ID: 15759678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental simulation of supersonic superboom in a water tank: nonlinear focusing of weak shock waves at a fold caustic.
    Marchiano R; Thomas JL; Coulouvrat F
    Phys Rev Lett; 2003 Oct; 91(18):184301. PubMed ID: 14611285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed analysis about penumbra caustics.
    Marchiano R
    J Acoust Soc Am; 2010 Apr; 127(4):2129-40. PubMed ID: 20369994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of wave front folding of sonic booms by a laboratory-scale deterministic experiment of shock waves in a heterogeneous medium.
    Ganjehi L; Marchiano R; Coulouvrat F; Thomas JL
    J Acoust Soc Am; 2008 Jul; 124(1):57-71. PubMed ID: 18646955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of shock wave focusing at fold caustics, with application to sonic boom.
    Marchiano R; Coulouvrat F; Grenon R
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1758-71. PubMed ID: 14587578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistics of peak overpressure and shock steepness for linear and nonlinear N-wave propagation in a kinematic turbulence.
    Yuldashev PV; Ollivier S; Karzova MM; Khokhlova VA; Blanc-Benon P
    J Acoust Soc Am; 2017 Dec; 142(6):3402. PubMed ID: 29289086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.
    Dagrau F; Rénier M; Marchiano R; Coulouvrat F
    J Acoust Soc Am; 2011 Jul; 130(1):20-32. PubMed ID: 21786874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical investigation of the properties of nonlinear acoustical vortices through weakly heterogeneous media.
    Marchiano R; Coulouvrat F; Ganjehi L; Thomas JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016605. PubMed ID: 18351949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear and diffraction effects in propagation of N-waves in randomly inhomogeneous moving media.
    Averiyanov M; Blanc-Benon P; Cleveland RO; Khokhlova V
    J Acoust Soc Am; 2011 Apr; 129(4):1760-72. PubMed ID: 21476633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Linear and nonlinear ultrasound simulations using the discontinuous Galerkin method.
    Kelly JF; Marras S; Zhao X; McGough RJ
    J Acoust Soc Am; 2018 Apr; 143(4):2438. PubMed ID: 29716249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the split-step Padé approach to nonlinear field predictions.
    Kamakura T; Nomura H; Clement GT
    Ultrasonics; 2013 Feb; 53(2):432-8. PubMed ID: 23099121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear waves and shocks in a rigid acoustical guide.
    Fernando R; Druon Y; Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2011 Feb; 129(2):604-15. PubMed ID: 21361419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical Simulation of Focused Shock Shear Waves in Soft Solids and a Two-Dimensional Nonlinear Homogeneous Model of the Brain.
    Giammarinaro B; Coulouvrat F; Pinton G
    J Biomech Eng; 2016 Apr; 138(4):041003. PubMed ID: 26833489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auto-focusing and self-healing of Pearcey beams.
    Ring JD; Lindberg J; Mourka A; Mazilu M; Dholakia K; Dennis MR
    Opt Express; 2012 Aug; 20(17):18955-66. PubMed ID: 23038535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.
    Yuldashev P; Ollivier S; Averiyanov M; Sapozhnikov O; Khokhlova V; Blanc-Benon P
    J Acoust Soc Am; 2010 Dec; 128(6):3321-33. PubMed ID: 21218866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear Fresnel diffraction of weak shock waves.
    Coulouvrat F; Marchiano R
    J Acoust Soc Am; 2003 Oct; 114(4 Pt 1):1749-57. PubMed ID: 14587577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric turbulence effects on shaped and unshaped sonic boom signatures.
    Stout TA; Sparrow VW
    J Acoust Soc Am; 2022 May; 151(5):3280. PubMed ID: 35649900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of numerical predictions of sonic boom level variability due to atmospheric turbulence.
    Stout TA; Sparrow VW; Blanc-Benon P
    J Acoust Soc Am; 2021 May; 149(5):3250. PubMed ID: 34241145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane hydrophone measurement and numerical simulation of HIFU fields up to developed shock regimes.
    Bessonova OV; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Feb; 60(2):290-300. PubMed ID: 23357903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evidence of deviation from mirror reflection for acoustical shock waves.
    Marchiano R; Coulouvrat F; Baskar S; Thomas JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056602. PubMed ID: 18233777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.