These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 15759682)

  • 1. Measurement and modeling of three-dimensional sound intensity variations due to shallow-water internal waves.
    Badiey M; Katsnelson BG; Lynch JF; Pereselkov S; Siegmann WL
    J Acoust Soc Am; 2005 Feb; 117(2):613-25. PubMed ID: 15759682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency dependence and intensity fluctuations due to shallow water internal waves.
    Badiey M; Katsnelson BG; Lynch JF; Pereselkov S
    J Acoust Soc Am; 2007 Aug; 122(2):747-60. PubMed ID: 17672625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bottom attenuation estimation using sound intensity fluctuations due to mode coupling by nonlinear internal waves in shallow water.
    Grigorev VA; Katsnelson BG; Lynch JF
    J Acoust Soc Am; 2016 Nov; 140(5):3980. PubMed ID: 27908061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horizontal structure of acoustic intensity fluctuations in the ocean.
    Uscinski BJ; Nicholson JR
    J Acoust Soc Am; 2008 Oct; 124(4):1963-73. PubMed ID: 19062836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.
    Oba R; Finette S
    J Acoust Soc Am; 2002 Feb; 111(2):769-84. PubMed ID: 11863179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic multipath arrivals in the horizontal plane due to approaching nonlinear internal waves.
    Badiey M; Katsnelson BG; Lin YT; Lynch JF
    J Acoust Soc Am; 2011 Apr; 129(4):EL141-7. PubMed ID: 21476621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Underwater acoustic energy fluctuations during strong internal wave activity using a three-dimensional parabolic equation model.
    Dossot GA; Smith KB; Badiey M; Miller JH; Potty GR
    J Acoust Soc Am; 2019 Sep; 146(3):1875. PubMed ID: 31590552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of sound focusing and defocusing due to propagating nonlinear internal waves.
    Luo J; Badiey M; Karjadi EA; Katsnelson B; Tskhoidze A; Lynch JF; Moum JN
    J Acoust Soc Am; 2008 Sep; 124(3):EL66-72. PubMed ID: 19045564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability of phase and amplitude fronts due to horizontal refraction in shallow water.
    Katsnelson BG; Grigorev VA; Lynch JF
    J Acoust Soc Am; 2018 Jan; 143(1):193. PubMed ID: 29390752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and modeling of broadband airgun data influenced by nonlinear internal waves.
    Frank SD; Badiey M; Lynch JF; Siegmann WL
    J Acoust Soc Am; 2004 Dec; 116(6):3404-22. PubMed ID: 15658692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal and vertical scales of acoustic fluctuations for 75-Hz, broadband transmissions to 87-km range in the eastern North Pacific Ocean.
    Colosi JA; Xu J; Worcester PF; Dzieciuch MA; Howe BM; Mercer JA
    J Acoust Soc Am; 2009 Sep; 126(3):1069-83. PubMed ID: 19739719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horizontal refraction of propagating sound due to seafloor scours over a range-dependent layered bottom on the New Jersey shelf.
    Ballard MS; Lin YT; Lynch JF
    J Acoust Soc Am; 2012 Apr; 131(4):2587-98. PubMed ID: 22501040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment.
    Headrick RH; Lynch JF; Kemp JN; Newhall AE; von der Heydt K ; Apel J; Badiey M; Chiu C; Finette S; Orr M; Pasewark B; Turgot A; Wolf S; Tielbuerger D
    J Acoust Soc Am; 2000 Jan; 107(1):201-20. PubMed ID: 10641632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range.
    Duda TF; Lin YT; Reeder DB
    J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area.
    Lin YT; Duda TF; Lynch JF
    J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal sound field fluctuations in the presence of internal solitary waves in shallow water.
    Katsnelson BG; Grigorev V; Badiey M; Lynch JF
    J Acoust Soc Am; 2009 Jul; 126(1):EL41-8. PubMed ID: 19603852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic field variability induced by time evolving internal wave fields.
    Finette S; Orr MH; Turgut A; Apel JR; Badiey M; Chiu CS; Headrick RH; Kemp JN; Lynch JF; Newhall AE; von der Heydt K ; Pasewark B; Wolf SN; Tielbuerger D
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):957-72. PubMed ID: 11008800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity fluctuations of midfrequency sound signals passing through moving nonlinear internal waves.
    Katsnelson B; Grigorev V; Lynch JF
    J Acoust Soc Am; 2008 Sep; 124(3):EL78-84. PubMed ID: 19045566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic observations of internal tides and tidal currents in shallow water.
    Turgut A; Mignerey PC; Goldstein DJ; Schindall JA
    J Acoust Soc Am; 2013 Apr; 133(4):1981-6. PubMed ID: 23556568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D acoustic propagation through an estuarine salt wedge at low-to-mid-frequencies: Modeling and measurement.
    Reeder DB; Lin YT
    J Acoust Soc Am; 2019 Sep; 146(3):1888. PubMed ID: 31590566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.