These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 15759695)

  • 1. Effective impedance spectra for predicting rough sea effects on atmospheric impulsive sounds.
    Boulanger P; Attenborough K
    J Acoust Soc Am; 2005 Feb; 117(2):751-62. PubMed ID: 15759695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction assisted rough ground effect: models and data.
    Bashir I; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Mar; 133(3):1281-92. PubMed ID: 23464001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase and group speeds of airborne surface waves over porous layers and periodically rough hard surfaces.
    Attenborough K; Taherzadeh S
    J Acoust Soc Am; 2024 Aug; 156(2):1123-1134. PubMed ID: 39145640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective impedance of rough porous ground surfaces.
    Attenborough K; Waters-Fuller T
    J Acoust Soc Am; 2000 Sep; 108(3 Pt 1):949-56. PubMed ID: 11008799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field measurements of sonic boom penetration into the ocean.
    Sohn RA; Vernon F; Hildebrand JA; Webb SC
    J Acoust Soc Am; 2000 Jun; 107(6):3073-83. PubMed ID: 10875353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface waves over periodically-spaced rectangular strips.
    Bashir I; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2013 Dec; 134(6):4691. PubMed ID: 25669281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound propagation above a porous road surface with extended reaction by boundary element method.
    Anfosso-Lédée F; Dangla P; Bérengier M
    J Acoust Soc Am; 2007 Aug; 122(2):731-6. PubMed ID: 17672623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces.
    Gao Y; Shao Q; Yan B; Li Q; Guo S
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30871080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A time domain rough surface scattering model based on wedge diffraction: application to low-frequency backscattering from two-dimensional sea surfaces.
    Keiffer RS; Novarini JC
    J Acoust Soc Am; 2000 Jan; 107(1):27-39. PubMed ID: 10641617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic insertion loss due to two dimensional periodic arrays of circular cylinders parallel to a nearby surface.
    Krynkin A; Umnova O; Sánchez-Pérez JV; Chong AY; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2011 Dec; 130(6):3736-45. PubMed ID: 22225030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical theory of wetting of liquid drops on superhydrophobic randomly rough surfaces.
    Afferrante L; Carbone G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042407. PubMed ID: 26565257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of an acoustic backscatter technique for characterizing the roughness of porous soil.
    Oelze ML; Sabatier JM; Raspet R
    J Acoust Soc Am; 2002 Apr; 111(4):1565-77. PubMed ID: 12002841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of coherent reflection from rough-surface scattered acoustic fields via the frequency-difference autoproduct.
    Joslyn NJ; Dowling DR
    J Acoust Soc Am; 2022 Jan; 151(1):620. PubMed ID: 35105029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling turbulent boundary layer flow over fractal-like multiscale terrain using large-eddy simulations and analytical tools.
    Yang XI; Meneveau C
    Philos Trans A Math Phys Eng Sci; 2017 Apr; 375(2091):. PubMed ID: 28265022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roughness characterization of porous soil with acoustic backscatter.
    Oelze ML; Sabatier JM; Raspet R
    J Acoust Soc Am; 2001 May; 109(5 Pt 1):1826-32. PubMed ID: 11386537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximate impedance models for point-to-point sound propagation over acoustically-hard ground containing rectangular grooves.
    Mellish S; Taherzadeh S; Attenborough K
    J Acoust Soc Am; 2020 Jan; 147(1):74. PubMed ID: 32007012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytic height correlation function of rough surfaces derived from light scattering.
    Zamani M; Shafiei F; Fazeli SM; Downer MC; Jafari GR
    Phys Rev E; 2016 Oct; 94(4-1):042809. PubMed ID: 27841612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scattering of electromagnetic waves from 3D multilayer random rough surfaces based on the second-order small perturbation method: energy conservation, reflectivity, and emissivity.
    Sanamzadeh M; Tsang L; Johnson JT; Burkholder RJ; Tan S
    J Opt Soc Am A Opt Image Sci Vis; 2017 Mar; 34(3):395-409. PubMed ID: 28248366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model for continuously scanning ultrasound vibrometer sensing displacements of randomly rough vibrating surfaces.
    Ratilal P; Andrews M; Donabed N; Galinde A; Rappaport C; Fenneman D
    J Acoust Soc Am; 2007 Feb; 121(2):863-78. PubMed ID: 17348511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of roughness based on the Talbot effect in reflection from rough surfaces.
    Dashtdar M; Mohammadzade A; Hosseini-Saber SM
    Appl Opt; 2015 Jun; 54(16):5210-5. PubMed ID: 26192685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.