These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15759695)

  • 21. Applicability of the effective medium approximation in the ellipsometry of randomly micro-rough solid surfaces.
    Liu Y; Qiu J; Liu L
    Opt Express; 2018 Jun; 26(13):16560-16571. PubMed ID: 30119484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The scattering of sound by a long cylinder above an impedance boundary.
    Lui WK; Li KM
    J Acoust Soc Am; 2010 Feb; 127(2):664-74. PubMed ID: 20136188
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical diagnostics of slightly rough surfaces.
    Angelsky OV; Maksimyak PP
    Appl Opt; 1992 Jan; 31(1):140-3. PubMed ID: 20717384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Attenuation of Rayleigh waves due to surface roughness.
    Sarris G; Haslinger SG; Huthwaite P; Nagy PB; Lowe MJS
    J Acoust Soc Am; 2021 Jun; 149(6):4298. PubMed ID: 34241461
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical studies of backscattering enhancement of electromagnetic waves from two-dimensional random rough surfaces with the forward-backward/novel spectral acceleration method.
    Torrungrueng D; Johnson JT
    J Opt Soc Am A Opt Image Sci Vis; 2001 Oct; 18(10):2518-26. PubMed ID: 11583269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A transient boundary element method model of Schroeder diffuser scattering using well mouth impedance.
    Hargreaves JA; Cox TJ
    J Acoust Soc Am; 2008 Nov; 124(5):2942-51. PubMed ID: 19045782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rigorous speckle simulation using surface integral equations and higher order boundary element method.
    Fu L; Frenner K; Osten W
    Opt Lett; 2014 Jul; 39(14):4104-7. PubMed ID: 25121662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low frequency wind noise contributions in measurement microphones.
    Raspet R; Yu J; Webster J
    J Acoust Soc Am; 2008 Mar; 123(3):1260-9. PubMed ID: 18345815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Scattering of electromagnetic waves from two-dimensional randomly rough penetrable surfaces.
    Simonsen I; Maradudin AA; Leskova TA
    Phys Rev Lett; 2010 Jun; 104(22):223904. PubMed ID: 20867172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of nonsingular boundary integral formulation for reducing errors due to near-field measurements in the boundary element method based near-field acoustic holography.
    Kang SC; Ih JG
    J Acoust Soc Am; 2001 Apr; 109(4):1320-8. PubMed ID: 11325103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A non-invasive acoustical method to measure the mean roughness height of the free surface of a turbulent shallow water flow.
    Krynkin A; Horoshenkov KV; Nichols A; Tait SJ
    Rev Sci Instrum; 2014 Nov; 85(11):114902. PubMed ID: 25430137
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Doppler spectra of airborne ultrasound forward scattered by the rough surface of open channel turbulent water flows.
    Dolcetti G; Krynkin A
    J Acoust Soc Am; 2017 Nov; 142(5):3122. PubMed ID: 29195466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scattering of electromagnetic waves from two-dimensional rough surfaces with an impedance approximation.
    Soriano G; Saillard M
    J Opt Soc Am A Opt Image Sci Vis; 2001 Jan; 18(1):124-33. PubMed ID: 11151989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reflective properties of randomly rough surfaces under large incidence angles.
    Qiu J; Zhang WJ; Liu LH; Hsu PF; Liu LJ
    J Opt Soc Am A Opt Image Sci Vis; 2014 Jun; 31(6):1251-8. PubMed ID: 24977364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.
    Yang SA
    J Acoust Soc Am; 2002 Oct; 112(4):1307-17. PubMed ID: 12398437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Turbulent flow in smooth and rough pipes.
    Allen JJ; Shockling MA; Kunkel GJ; Smits AJ
    Philos Trans A Math Phys Eng Sci; 2007 Mar; 365(1852):699-714. PubMed ID: 17244585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The diffraction of sound by an impedance sphere in the vicinity of a ground surface.
    Li KM; Lui WK; Frommer GH
    J Acoust Soc Am; 2004 Jan; 115(1):42-56. PubMed ID: 14758994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coherence of the frequency-difference autoproduct deduced from high-frequency acoustic fields scattered from a rough sea surfacea).
    Joslyn NJ; Dahl PH; Dowling DR
    J Acoust Soc Am; 2024 Jul; 156(1):600-609. PubMed ID: 39029097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.