These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 15759702)

  • 1. Simultaneous recording of stimulus-frequency and distortion-product otoacoustic emission input-output functions in human ears.
    Schairer KS; Keefe DH
    J Acoust Soc Am; 2005 Feb; 117(2):818-32. PubMed ID: 15759702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Input-output functions for stimulus-frequency otoacoustic emissions in normal-hearing adult ears.
    Schairer KS; Fitzpatrick D; Keefe DH
    J Acoust Soc Am; 2003 Aug; 114(2):944-66. PubMed ID: 12942975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements.
    Ellison JC; Keefe DH
    Ear Hear; 2005 Oct; 26(5):487-503. PubMed ID: 16230898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the Compressive Nonlinearity of the Cochlea During Early Aging: Estimates From Distortion OAE Input/Output Functions.
    Ortmann AJ; Abdala C
    Ear Hear; 2016; 37(5):603-14. PubMed ID: 27232070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears.
    Boege P; Janssen T
    J Acoust Soc Am; 2002 Apr; 111(4):1810-8. PubMed ID: 12002865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions.
    Gorga MP; Neely ST; Dorn PA; Hoover BM
    J Acoust Soc Am; 2003 Jun; 113(6):3275-84. PubMed ID: 12822800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient-evoked stimulus-frequency and distortion-product otoacoustic emissions in normal and impaired ears.
    Konrad-Martin D; Keefe DH
    J Acoust Soc Am; 2005 Jun; 117(6):3799-815. PubMed ID: 16018483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear compression estimates from measurements of distortion-product otoacoustic emissions.
    Neely ST; Gorga MP; Dorn PA
    J Acoust Soc Am; 2003 Sep; 114(3):1499-507. PubMed ID: 14514203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Input-output functions of the nonlinear-distortion component of distortion-product otoacoustic emissions in normal and hearing-impaired human ears.
    Zelle D; Lorenz L; Thiericke JP; Gummer AW; Dalhoff E
    J Acoust Soc Am; 2017 May; 141(5):3203. PubMed ID: 28599560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sources of DPOAEs revealed by suppression experiments, inverse fast Fourier transforms, and SFOAEs in impaired ears.
    Konrad-Martin D; Neely ST; Keefe DH; Dorn PA; Cyr E; Gorga MP
    J Acoust Soc Am; 2002 Apr; 111(4):1800-9. PubMed ID: 12002864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distortion product otoacoustic emission suppression tuning curves in normal-hearing and hearing-impaired human ears.
    Gorga MP; Neely ST; Dierking DM; Dorn PA; Hoover BM; Fitzpatrick DF
    J Acoust Soc Am; 2003 Jul; 114(1):263-78. PubMed ID: 12880040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cochlear Mechanisms and Otoacoustic Emission Test Performance.
    Go NA; Stamper GC; Johnson TA
    Ear Hear; 2019; 40(2):401-417. PubMed ID: 29952805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Level dependence of the nonlinear-distortion component of distortion-product otoacoustic emissions in humans.
    Zelle D; Thiericke JP; Dalhoff E; Gummer AW
    J Acoust Soc Am; 2015 Dec; 138(6):3475-90. PubMed ID: 26723305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reflection- and Distortion-Source Otoacoustic Emissions: Evidence for Increased Irregularity in the Human Cochlea During Aging.
    Abdala C; Ortmann AJ; Shera CA
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):493-510. PubMed ID: 29968098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical test performance of distortion-product otoacoustic emissions using new stimulus conditions.
    Johnson TA; Neely ST; Kopun JG; Dierking DM; Tan H; Gorga MP
    Ear Hear; 2010 Feb; 31(1):74-83. PubMed ID: 19701088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans.
    Dewey JB; Dhar S
    J Assoc Res Otolaryngol; 2017 Feb; 18(1):89-110. PubMed ID: 27681700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-source interference as the major reason for auditory-threshold estimation error based on DPOAE input-output functions in normal-hearing subjects.
    Dalhoff E; Turcanu D; Vetešník A; Gummer AW
    Hear Res; 2013 Feb; 296():67-82. PubMed ID: 23268357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Influence of Extended High-Frequency Hearing on Cochlear Functioning at Lower Frequencies.
    Mishra SK; Rodrigo H; Balan JR
    J Speech Lang Hear Res; 2024 Jul; 67(7):2473-2482. PubMed ID: 38820241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of SFOAE microstructure in the guinea pig.
    Goodman SS; Withnell RH; Shera CA
    Hear Res; 2003 Sep; 183(1-2):7-17. PubMed ID: 13679133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates.
    Janssen T; Gehr DD; Klein A; Müller J
    J Acoust Soc Am; 2005 May; 117(5):2969-79. PubMed ID: 15957767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.